K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2023

Bài nào ớ em?

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Lời giải:

Đặt \(\sqrt[3]{5\sqrt{2}+7}=m; \sqrt[3]{5\sqrt{2}-7}=n\)

\(m^3-n^3=14\)

\(mn=1\)

\((a+b+c)^3=(m-n)^3=m^3-3mn(m-n)-n^3=14-3(m-n)\)

\(\Leftrightarrow (a+b+c)^3=14-3(a+b+c)\)

\(\Leftrightarrow (a+b+c)^3+3(a+b+c)-14=0\)

\(\Leftrightarrow (a+b+c)^2[(a+b+c)-2]+2(a+b+c)(a+b+c-2)+7(a+b+c-2)=0\)

\(\Leftrightarrow (a+b+c-2)[(a+b+c)^2+2(a+b+c)+7]=0\)

Dễ thấy biểu thức trong ngoặc vuông $>0$ nên $a+b+c-2=0$

$\Leftrightarrow a+b+c=2$

$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{2^2-1}{2}=\frac{3}{2}$

 

19 tháng 3 2021

không có câu hỏi ạ

19 tháng 3 2021

undefined

18 tháng 2 2021

Q = \(\dfrac{3\sqrt{x}}{x+1}\) (x \(\ge\) 0; x \(\ne\) 4)

Áp dụng BĐT Cô-si cho 2 số không âm x và 1 ta được:

\(\dfrac{x+1}{2}\ge\sqrt{x}\) (1)

\(\Leftrightarrow\) \(\dfrac{3\cdot\dfrac{x+1}{2}}{x+1}\ge\dfrac{3\sqrt{x}}{x+1}\) (x + 1 > 0 với mọi x \(\ge\) 0)

\(\Leftrightarrow\) \(\dfrac{6}{2\left(x+1\right)}\ge\dfrac{3\sqrt{x}}{x+1}\)

\(\Leftrightarrow\) \(\dfrac{3}{x+1}\ge\dfrac{3\sqrt{x}}{x+1}\) (*)

Dấu "=" xảy ra \(\Leftrightarrow\) x = 1 (TM)

Khi đó: \(\dfrac{3\sqrt{x}}{x+1}\le\dfrac{3}{1+1}=\dfrac{3}{2}\)

Vậy QMax = \(\dfrac{3}{2}\) khi và chỉ khi x = 1

Chúc bn học tốt!

19 tháng 2 2021

Mình cảm ơn ạ

8 tháng 10 2021

Làm giúp mình với mọi người ơi