Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
18.
Áp dụng BĐT quen thuộc: \(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\) ta có:
\(\dfrac{1}{1+a^3}+\dfrac{1}{1+b^3}\ge\dfrac{2}{1+\sqrt{a^3b^3}}\) ; \(\dfrac{1}{1+c^3}+\dfrac{1}{1+abc}\ge\dfrac{2}{1+\sqrt{abc^4}}\)
Cộng vế:
\(\dfrac{1}{1+a^3}+\dfrac{1}{1+b^3}+\dfrac{1}{1+c^3}+\dfrac{1}{1+abc}\ge2\left(\dfrac{1}{1+\sqrt{a^3b^3}}+\dfrac{1}{1+\sqrt{abc^4}}\right)\ge2\left(\dfrac{2}{1+\sqrt[4]{a^4b^4c^4}}\right)\)
\(\Rightarrow\dfrac{1}{1+a^3}+\dfrac{1}{1+b^3}+\dfrac{1}{1+c^3}+\dfrac{1}{1+abc}\ge\dfrac{4}{1+abc}\)
\(\Rightarrow\dfrac{1}{1+a^3}+\dfrac{1}{1+b^3}+\dfrac{1}{1+c^3}\ge\dfrac{3}{1+abc}\) (đpcm)
19.
Biến đổi tương đương:
\(\Leftrightarrow\left(a^2+b^2\right)xy+ab\left(x^2+y^2\right)\ge\left(a^2+b^2+2ab\right)xy\)
\(\Leftrightarrow\left(a^2+b^2\right)xy+ab\left(x^2+y^2\right)\ge\left(a^2+b^2\right)xy+2abxy\)
\(\Leftrightarrow ab\left(x^2+y^2\right)-2abxy\ge0\)
\(\Leftrightarrow ab\left(x^2+y^2-2xy\right)\ge0\)
\(\Leftrightarrow ab\left(x-y\right)^2\ge0\)
a) Ta có: \(\left(x-1.5\right)^6+2\left(1.5-x\right)^2=0\)
\(\Leftrightarrow\left(x-1.5\right)^2\left[\left(x-1.5\right)^4+2\right]=0\)
\(\Leftrightarrow x-1.5=0\)
hay x=1,5
b) Ta có: \(2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow2x+3=0\)
hay \(x=-\dfrac{3}{2}\)
Câu 35: B
Câu 36: D
Câu 37: D
Câu 38: C
Câu 39: A
Câu 40: B
Đổi 24' = 0,4h
Gọi thời gian dự định của ô tô là x ( h ) Đk: x > 0,4
Ta có quãng đường ô tô phải đi là 50x ( km )
Sau 24 phút quãng đường ô tô đi được là 50 . 0,4 = 20 ( km )
Vậy quãng đường còn lại là 50x - 20 ( km )
Thời gian ô tô đi quãng đường còn lại là \(\dfrac{50x-20}{40}\) (h)
Ta có PT:
( 0,4 + \(\dfrac{50x-20}{40}\) ) - x = 0,3
=> x = 1,6 ( TMĐK )
Vậy thời gian dự định của ô tô là 1,6 h
Bài 33:
a: \(x^2-3x+2=\left(x-2\right)\left(x-1\right)\)
Câu 18: B
Câu 19: B
Câu 20: D
Câu 21; D
Câu 22: B
Câu 23: B
Câu 24: A