Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1)
b, Có \(x\ge0\Rightarrow B=x+\sqrt{x}+4\ge0+0+4=4\)
Dấu "=" xảy ra khi x=0
Vậy \(B_{min}=4\)
Bài 1 :
\(b,B=x+\sqrt{x}+4=x+2.\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{15}{4}\)
\(=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\)
Thấy : \(\sqrt{x}+\dfrac{1}{2}\ge\dfrac{1}{2}\)
\(\Rightarrow B=\left(\sqrt{x}+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\ge4\)
Vậy \(Min_B=4\Leftrightarrow x=0\)
\(=\sqrt{3}-1+\sqrt{\left(6-\sqrt{3}\right)^2}=\sqrt{3}-1+6-\sqrt{3}=5\)
\(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{39-2\sqrt{108}}\)
\(=\sqrt{3}-1+6-\sqrt{3}\)
=5
a, Vì D là trung điểm BC => OD vuông BC
AM là tiếp tuyến với M là tiếp điểm nên ^AMO = 900
Xét tứ giác AMOD ta có
^AMO + ^ADO = 1800
mà 2 góc này đối
Vậy tứ giác AMOD nt 1 đường tròn
b, Xét tam giác AMB và tam giác ACM ta có
^AMB = ^ACM ( cùng chắn cung MB )
^A _ chung
Vậy tam giác AMB ~ tam giác ACM (g.g)
=> AM/AC = AB/AM => AM^2 = AB.AC
c, bạn ktra lại đề
b: Xét ΔAHC vuông tại H có HK là đường cao ứng với cạnh huyền AC
nên \(AH^2=AC\cdot AK\)
\(\Leftrightarrow\dfrac{AC}{2}=\dfrac{AH^2}{2\cdot AK}\)
hay \(HI=\dfrac{AH^2}{2\cdot AK}\)
a, Ta có \(\widehat{ACD}=90^0\) (góc nt chắn nửa đg tròn) nên CD⊥AC
Do đó CD//BE
Ta có \(\widehat{ABD}=90^0\) (góc nt chắn nửa đg tròn) nên BD⊥AB
Do đó BD//CF
Vậy BHCD là hbh
bạn đăng tách ra nhé
1, Lấy vế cộng vế ta được \(\dfrac{4}{x-2}=4\Rightarrow x-2=1\Leftrightarrow x=3\)
Thay vào ta được \(\dfrac{2}{3-2}-\dfrac{3}{y+1}=1\Rightarrow\dfrac{3}{y+1}=1\Rightarrow y+1=3\Leftrightarrow y=2\)