Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\frac{2}{15}=\frac{1}{3}\)
\(x=\frac{1}{3}-\frac{2}{15}\)
\(x=\frac{1}{5}\)
h, \(h,\frac{1}{3}-\frac{2}{3}:x=\frac{1}{4}\)
\(\frac{2}{3}:x\)= \(\frac{1}{3}-\frac{1}{4}\)
\(\frac{2}{3}:x=\frac{1}{12}\)
\(x=\frac{2}{3}:\frac{1}{12}\)
\(x=8\)
1) So sánh
3 77/379 và 3 79/381
2)
A= 1/6 + 1/10 + 1/15 + 1/21 + 1/28 + 1/36
Giúp mình nhé❤❤❤❤❄▫〰▫▫▫▫▫▫
2) A = \(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}\)
=> \(\frac{1}{2}\).A = \(\frac{1}{2}\).\(\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}\right)\)
=> \(\frac{1}{2}\).A = \(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
=> \(\frac{1}{2}\).A = \(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
=> \(\frac{1}{2}\).A = \(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
=> \(\frac{1}{2}\).A = \(\frac{1}{3}-\frac{1}{9}\)
=> \(\frac{1}{2}\).A = \(\frac{2}{9}\)
=> A = \(\frac{2}{9}:\frac{1}{2}\)
=> A = \(\frac{4}{9}\)
a, (sửa đề )
\(1+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{x.\left(x+1\right)}=\frac{1999}{2000}\)
=\(1+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x.\left(x+1\right)}\right)=\frac{1999}{2000}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x+\left(x+1\right)}=1-\frac{1999}{2000}=\frac{1}{2000}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2000}\)
=\(\frac{1}{1}-\frac{1}{x+1}=\frac{1}{2000}\)
=\(\frac{1}{x+1}=\frac{1}{1}-\frac{1}{2000}=\frac{1999}{2000}\)
=> \(x+1=1:\frac{1999}{2000}=\frac{2000}{1999}\)
=>\(x=\frac{2000}{1999}-1=\frac{1}{1999}\)
Vậy x ∈{ \(\frac{1}{1999}\)}
b, \(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+.....+\frac{2}{x+\left(x+1\right)}=\frac{2}{9}\)
=> \(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+.....+\frac{2}{x+\left(x+1\right)}=\frac{2}{9}\)
=>\(\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+.....+\frac{2}{x+\left(x+1\right)}=\frac{2}{9}\)
=>2.(\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+....+\frac{1}{x.\left(x+1\right)}\))=\(\frac{2}{9}\)
=>\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+....+\frac{1}{x+\left(x+1\right)}=\frac{2}{9}:2=\frac{1}{9}\)
=>\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
=>\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
=>\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}=\frac{1}{18}\)
=>\(x+1=18\)
=>\(x=18-1=17\)
=>x∈{17}
Bài 1 :
A = 12 + 22 + 32 +....+n2
A = 12 + 2.(1+1) + 3.(2 +1) + 4.( 3 +1) +.....+n(n-1 + 1)
A = 1 + 1.2 + 2 + 2.3 + 3 + 3.4 + 4 +.....+ n.(n-1) + n
A = ( 1 + 2 + 3 + 4 +....+n) + ( 1.2 + 2.3 + 3.4 +....+(n-1).n
A = (n+1).{(n-1):n+1)/2 +1/3.[1.2.3 +2.3.3 +.....+(n-1)n.3]
A = (n+1).n/2+1/3.[1.2.3 +2.3.(4-1)+ ...+(n-1).n [(n+1) - (n -2)]
A = (n+1)n/2+1/3.( 1.2.3 + 2.3.4 -1.2.3 +..+ (n-1)n(n+1)- (n-2)(n-1)n)
A =(n+1)n/2 + 1/3.(n-1)n(n+1)
A = n(n+1)[1/2 + 1/3 .(n-1)]
A = n.(n+1) \(\dfrac{3+2n-2}{6}\)
A= n.(n+1)(2n+1)/6
Bài 2 :
a, (x+1) +(x+2) + (x+3)+...+(x+10) = 5070
(x+10 +x+1).{( x+10 - x -1): 1 +1):2 = 5070
(2x + 11)10 : 2 = 5070
( 2x + 11)5 = 5070
2x+ 11 = 5070:5
2x = 1014 - 11
2x = 1003
x = 1003 :2
x = 501,5
b, 1 + 2 + 3 +...+x = 820
( x + 1)[ (x-1):1 +1] : 2 = 820
(x +1).x = 820 x 2
(x +1).x = 1640
(x +1) .x = 40 x 41
x = 40
Ta có: \(\frac{1}{101}\)>\(\frac{1}{200}\)
\(\frac{1}{102}\)>\(\frac{1}{200}\)
\(\frac{1}{103}\)>\(\frac{1}{200}\)
...
\(\frac{1}{200}\)=\(\frac{1}{200}\)
=>A>\(\frac{1}{200}\).100 =>A>\(\frac{1}{2}\)
x - (2/11.13 + 2/13.15 + 2/15.17 +...+ 2/53.55) = 3/11
=> x - (1/11 - 1/13 + 1/13 - 1/15 + 1/15 - 1/17 +...+ 1/53 - 1/55) = 3/11
=> x - (1/11 - 1/55) = 3/11
=> x - (5/55 - 1/55) = 3/11
=> x - 4/55 = 15/55
=> x = 15/55 + 4/55
=> x = 19/55
a) 4x - 15 = -75 -x
4x+x = -75 + 15
5x = 60
x= 60: 5
=> x= 12
b) 3| x-7| = 21
|x-7|= 21:3
|x-7|=7
=> x-7 =7 hoặc x-7=-7
+) x-7=7
x=7+7=14
+) x-7=-7
x= -7+7=0
=> x=14 hoặc x=0
c) Áp dụng t/c phân số bằng nhau
=> x= \(\frac{-3.\left(-2\right)}{6}\)=\(\frac{6}{6}\)=1
Thay x=1 => y= \(\frac{\left(-2\right).\left(-18\right)}{1}\)=\(\frac{36}{1}\)=36
Thay y =36 => z=\(\frac{\left(-18\right).24}{36}\)=\(\frac{-432}{36}\)=-12
vậy (x,y,z)= (1;36;-12)
(câu d dài quá vs lại cx dễ nên bn tự lm nha mk chỉ giúp đến đây thôi)
1999 phần bao nhiêu vậy bạn ?
xin lỗi mik ghi thiếu
là 1999/2000