K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔOAM cân tại O

mà OI là trung tuyến

nen OI vuông góc AM

góc MIO+góc MHO=180 độ

=>MIOH nội tiếp

13 tháng 4 2019

I là trung điểm MA => \(OI\perp AM\equiv I\)(định lý) => \(\widehat{OIM}=90^o\) mà \(\widehat{MHO}=90^o\)(do MH\(⊥\)AD  tại H)

=>\(\widehat{OIM}+\)\(\widehat{MHO}=90^o+90^o=180^o\)=> Tứ giác OIMH nội tiếp (có tổng 2 góc đối bằng 180o)

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

1/ Từ một điểm M  ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm) a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn nàyb/  Cho MO = 2R CMR tam giác MAB đều 2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn3/ Cho nửa đường tròn (O) đường kính AB. Từ A...
Đọc tiếp

1/ Từ một điểm M  ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB( A,B là tiếp điểm) 

a/ CMR tứ giác MAOB nội tiếp định tâm I và bán kính của đường tròn này

b/  Cho MO = 2R CMR tam giác MAB đều 

2/ Cho đường tròn (O) đường kính AB gọi I là trung điểm của OA. Qua I vẽ dây CD vuông góc AB. K la trung điểm của BC. CMR tứ giác CIOK nội tiếp đường tròn

3/ Cho nửa đường tròn (O) đường kính AB. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt Ax và By lần lượt tại E và F. CMR tứ giác AEMO là tứ giác nội tiếp 

4/ Cho tam giác ABC cân tại A có góc A nhọn, đường vuông góc với AB tại A cắt đường thẳng B, C tại E. Kẻ EN vuông với EC gọi M là trung điểm BC. CMR tứ giác AMNE là tứ giác nội tiếp đường tròn

Giải giúp mk vs mk đang cần gấp

1

Bài 2:

ΔOBC cân tại O

mà OK là trung tuyến

nên OK vuông góc BC

Xét tứ giác CIOK có

góc CIO+góc CKO=180 độ

=>CIOK là tứ giác nội tiếp

Bài 3:

Xét tứ giác EAOM có

góc EAO+góc EMO=180 độ

=>EAOM làtứ giác nội tiếp

31 tháng 8 2019

M A B D O H C K I A B C D S O M

a) Áp dụng tính chất 2 tiếp tuyến giao nhau thì MA = MB. Do đó OM là trung trực đoạn AB.

Vì OM giao AB tại H nên H là trung điểm của AB (đpcm).

b) Ta thấy ^ABD chắn nửa đường tròn (O) nên BD vuông góc với AB, có AB vuông góc OM

=> BD // OM => ^HMC = ^BDC (So le trong) = ^HAC => 4 điểm A,H,C,M cùng thuộc 1 đường tròn

Hay tứ giác AHCM nội tiếp (đpcm).

c) Áp dụng hệ thức lượng ta có MC.MD = MH.MO (= MB2) => Tứ giác DOHC nội tiếp

Vì ^ODC = ^OCD nên ^HO là phân giác ngoài của ^CHD. Lai có HO vuông góc HB

Suy ra HB là phân giác ^CHD => ^CHD = 2.^BHC = 2.AMC (Do tứ giác AHCM nội tiếp) (đpcm).

d) Bổ đề: Xét hình thang ABCD (AB // CD) có AC cắt BD tại O, M là trung điểm CD. Khi đó AD,BC,MO đồng quy.

Thật vậy: Gọi AD cắt BC tại S. Ta có \(\frac{OA}{OC}=\frac{AB}{CD}=\frac{SA}{SD}\). Từ đó: \(\frac{OA}{OC}.\frac{MC}{MD}.\frac{SD}{SA}=1\)

Theo ĐL Melelaus cho \(\Delta\)ACD thì 3 điểm M,O,S thẳng hàng. Tức là BC,AD,MO cắt nhau tại S.

Giải bài toán: Có ^HCB = ^HCK + ^BCD = ^HAM + ^BAD = ^MAO = 900 => HC vuông góc BI

Áp dụng hệ thức lượng trong tam giác vuông: IH2 = IB.IC

Mặt khác dễ thấy ^IMC= ^BDC = ^IBM => \(\Delta\)CIM ~ \(\Delta\)MIB (g.g) => IM2 = IB.IC

Suy ra IH = IM. Lúc đó, xét hình thang BDHM (HM // BD), MD cắt BH tại K, I là trung điểm HM

Ta thu được MB,HD,IK đồng quy (Theo bổ đề) (đpcm).