K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3: Ta có: A=B|x-4|

\(\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}-5}:\dfrac{1}{\sqrt{x}-5}=\left|x-4\right|\)

\(\Leftrightarrow\left|x-4\right|=\sqrt{x}-2\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=\sqrt{x}-2\left(x\ge4;x\ne25\right)\\x-4=2-\sqrt{x}\left(0< x< 4\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{x}-2=0\\x+\sqrt{x}-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)

1: Thay x=9 vào A, ta được:

\(A=\dfrac{3-2}{3-5}=\dfrac{-1}{-2}=\dfrac{1}{2}\)

2: Ta có: \(B=\dfrac{3}{\sqrt{x}+5}+\dfrac{20-2\sqrt{x}}{x-25}\)

\(=\dfrac{3\sqrt{x}-15+20-2\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

\(=\dfrac{1}{\sqrt{x}-5}\)

22 tháng 12 2021

2: Để (d1)//(d2) thì m-1=2

hay m=3

23 tháng 12 2021

Giải giúp em ik

NV
11 tháng 3 2022

\(\left(xy+3\right)^2+\left(x+y\right)^2=8\)

\(\Leftrightarrow x^2y^2+x^2+y^2+1=-8xy\)

\(\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}=-\dfrac{1}{4}\Leftrightarrow\dfrac{\left(xy+1\right)\left(x+y\right)}{x^2y^2+x^2+y^2+1}=-\dfrac{1}{4}\)

\(\Rightarrow\dfrac{\left(xy+1\right)\left(x+y\right)}{-8xy}=-\dfrac{1}{4}\)

\(\Rightarrow\left(xy+1\right)\left(x+y\right)=2xy\)

\(\Rightarrow x+y=\dfrac{2xy}{xy+1}\)

Thế vào pt ban đầu:

\(\left(xy+3\right)^2+\left(\dfrac{2xy}{xy+1}\right)^2=8\)

Đặt \(xy+1=t\Rightarrow\left(t+2\right)^2+4\left(\dfrac{t-1}{t}\right)^2=8\)

\(\Rightarrow\left(t^2+2t\right)^2-4\left(t^2+2t\right)+4=0\)

\(\Leftrightarrow\left(t^2+2t-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}t=-1-\sqrt{3}\\t=-1+\sqrt{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}xy=-2-\sqrt{3}\Rightarrow x+y=1+\sqrt{3}\\xy=-2+\sqrt{3}\Rightarrow x+y=1-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow x;y\) là nghiệm của: \(\left[{}\begin{matrix}X^2-\left(1+\sqrt{3}\right)X-2-\sqrt{3}=0\\X^2-\left(1-\sqrt{3}\right)X-2+\sqrt{3}=0\end{matrix}\right.\)

\(\Rightarrow...\)

x-3y+4=360

nên x-3y=356

=>x=3y+356

Ta có: xy=360

nên y(3y+356)=360

\(\Leftrightarrow3y^2+356y-360=0\)

=>Bạn xem lại đề, nghiệm rất xấu

29 tháng 6 2021

Đề sai rồi vì `P>0AAx>=0,x ne 1/2` mà phải tìm để `P<=0` nên nhất thiết mẫu là `2sqrtx-1` mặt khác còn lý do nữa là `x ne 1/2` mà không phải là `1/4` nên mình vẫn băn khoăn nhưng lý do đầu có vẻ thuyết phục hơn và sửa lại là `x ne 1/4` nhé!

`|P|>=P`

Mà `|P|>=0`

`=>P<=0`

`<=>(sqrtx+2)/(2sqrtx-1)<=0`

Mà `sqrtx+2>=2>0AAx>=0`

`<=>2sqrtx-1<0`

`<=>2sqrtx<1`

`<=>sqrtx<1/2`

`<=>x<1/4`

Vậy với `0<=x<1/4` thì `|P|>=P.`

14 tháng 6 2021

\(A=\dfrac{4x+2\sqrt{x}+2}{2\sqrt{x}+1}=\dfrac{2\sqrt{x}\left(2\sqrt{x}+1\right)+2}{2\sqrt{x}+1}=2\sqrt{x}+\dfrac{2}{2\sqrt{x}+1}\)

\(=2\sqrt{x}+1+\dfrac{2}{2\sqrt{x}+1}-1\ge2\sqrt{\left(2\sqrt{x}+1\right)\cdot\dfrac{2}{2\sqrt{x}+1}}-1=2\sqrt{2}-1\)

=> A \(\ge2\sqrt{2}-1\)

Dấu "=" xảy ra <=> \(2\sqrt{x}+1=\dfrac{2}{2\sqrt{x}+1}\)

<=> \(\left(2\sqrt{x}+1\right)^2=2\) <=> \(\left[{}\begin{matrix}2\sqrt{x}+1=2\\2\sqrt{x}+1=-2\left(loại\right)\end{matrix}\right.\)

<=> \(\sqrt{x}=\dfrac{1}{2}\) <=> \(x=\dfrac{1}{4}\)(tm)

Vậy minA = \(2\sqrt{2}-1\) khi x = 1/4

AH
Akai Haruma
Giáo viên
18 tháng 6 2021

Câu 1:

Theo hệ thức lượng trong tam giác vuông thì:

$AH^2=BH.CH=2.3=6$ 

$\Rightarrow AH=\sqrt{6}$ (cm)

Đáp án C.

AH
Akai Haruma
Giáo viên
18 tháng 6 2021

Câu 2:

Theo hệ thức lượng trong tam giác vuông:

$AH^2=BH.CH$

$BH=\frac{AH^2}{CH}=\frac{10^2}{5}=20$ (cm)

$BC=BH+CH=20+5=25$ (cm)

Không có đáp án nào đúng.