K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 14; 

a: ĐKXĐ: x<>2

b: \(\dfrac{x^2-4}{x-2}=x+2\)

c: Thay x=1 vào x+2, ta được:

x+2=1+2=3

15 tháng 12 2021

Bài 4:

\(P=\dfrac{4x^2-2x+7}{2x-1}=\dfrac{2x\left(2x-1\right)+7}{2x-1}=2x+\dfrac{7}{2x-1}\in Z\\ \Leftrightarrow2x-1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Leftrightarrow x\in\left\{-3;0;1;4\right\}\\ Q=\dfrac{4x^2-2x+3}{2x-1}=\dfrac{2x\left(2x-1\right)+3}{2x-1}=2x+\dfrac{3}{2x-1}\in Z\\ \Leftrightarrow2x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-1;0;1;2\right\}\)

Bài 5:

\(M=\dfrac{\left(5x-1\right)\left(5x+1\right)}{1-5x}+\dfrac{\left(y-3\right)\left(5x+1\right)}{y-3}=-\left(5x+1\right)+5x+1=0\)

Bài 6:

\(VT=\dfrac{a\left(a+3b\right)}{\left(a+3b\right)\left(a-3b\right)}-\dfrac{\left(2a+b\right)\left(a-3b\right)}{\left(a-3b\right)^2}=\dfrac{a}{a-3b}-\dfrac{2a+b}{a-3b}=\dfrac{-a-b}{a-3b}\)

\(VP=\dfrac{\left(a+b\right)\left(a+c\right)}{\left(a+c\right)\left(3b-a\right)}=\dfrac{a+b}{3b-a}=\dfrac{-a-b}{a-3b}\)

Vậy ta đc đpcm

10 tháng 5 2022

Gọi \(x\left(km\right)\) là quãng đường từ nhà bác Bình lên huyện \(\left(x>0\right)\)

Vì vận tốc lúc đi là 20km/h nên thời gian lúc đi là \(\dfrac{x}{20}\left(h\right)\)

Vận tốc lúc về nhanh hơn so với lúc đi là 10km/h (tức vận tốc lúc về là 30km/h) nên thời gian lúc về là \(\dfrac{x}{30}\left(h\right)\)

Vì thời gian về nhanh hơn thời gian đi là 2 giờ nên ta có pt \(\dfrac{x}{20}-\dfrac{x}{30}=2\Leftrightarrow\dfrac{3x-2x}{60}=2\Leftrightarrow\dfrac{x}{60}=2\Rightarrow x=120\) (nhận)

Vậy quãng đường từ nhà bác Bình đến huyện là 120km.

26 tháng 12 2021

câu hỏi đâu bn ?

5 tháng 5 2022

bài đâu bn

NV
24 tháng 1 2022

1.

a.

\(n^2+7n+1=k^2\Rightarrow4n^2+28n+4=4k^2\)

\(\Leftrightarrow\left(2n+7\right)^2-45=\left(2k\right)^2\)

\(\Leftrightarrow\left(2n-2k+7\right)\left(2n+2k+7\right)=45\)

Phương trình ước số cơ bản

b.

\(a^3b^3+b^3-3ab^2=-1\)

\(\Leftrightarrow a^3+1-\dfrac{3a}{b}=-\dfrac{1}{b^3}\)

\(\Leftrightarrow a^3+\dfrac{1}{b^3}+1-\dfrac{3a}{b}=0\)

Đặt \(\left(a;\dfrac{1}{b}\right)=\left(x;y\right)\Rightarrow x^3+y^3+1-3xy=0\)

\(\Leftrightarrow\left(x+y\right)^3+1-3xy\left(x+y\right)-3xy=0\)

\(\Leftrightarrow\left(x+y+1\right)\left(x^2+y^2+1-xy-x-y\right)=0\)

\(\Leftrightarrow x+y+1=0\)

\(\Rightarrow P=a+\dfrac{1}{b}=x+y=-1\)

NV
24 tháng 1 2022

2.

a.

 \(a+b+\dfrac{1}{a}+\dfrac{1}{b}=\left(\dfrac{a}{4}+\dfrac{1}{a}\right)+\left(\dfrac{b}{4}+\dfrac{1}{b}\right)+\dfrac{3}{4}\left(a+b\right)\)

\(\ge2\sqrt{\dfrac{a}{4a}}+2\sqrt{\dfrac{b}{4b}}+\dfrac{3}{4}.4=5\) (đpcm)

Dấu "=" xảy ra khi \(a=b=2\)

 

25 tháng 12 2021

6: \(=x^3\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(x-1\right)\left(x^2+x+1\right)\)

7: =(x-4)(x+2)

25 tháng 12 2021

2/

\(2x^3-8x=2x\left(x^2-4\right)=2x\left(x-2\right)\left(x+2\right)\)

3/

\(9x^2-\left(x-1\right)^2=\left(3x\right)^2-\left(x-1\right)^2=\left(3x-x+1\right)\left(3x+x-1\right)\)

4/

\(x^2-3x+6y-4y^2=x^2-4y^2-3x+6y=\left(x^2-4y^2\right)-\left(3x-6y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-3\left(x-2y\right)=\left(x-2y\right)\left(x+2y-3\right)\)

 

 

25 tháng 12 2021

7: =(x-4)(x+2)

4: \(=\left(x-2y\right)\left(x+2y\right)-3\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+2y-3\right)\)

29 tháng 12 2021

\(1,=5x\left(1-4x+4x^2\right)=5x\left(2x-1\right)^2\\ 2,=x\left(x-2y\right)-3\left(x-2y\right)=\left(x-3\right)\left(x-2y\right)\\ 3,=4x^2-\left(y+3\right)^2=\left(2x+y+3\right)\left(2x-y-3\right)\)

26 tháng 9 2021

\(1,\\ a,\dfrac{8x}{2xy}=\dfrac{4x}{y}\\ b,\dfrac{2xy}{6y}=\dfrac{x}{3}\\ c,\dfrac{3\left(x+2\right)}{2x}=\dfrac{6\left(x+2\right)}{4x}\\ d,\dfrac{4\left(x-2\right)}{3\left(x+1\right)}=\dfrac{8\left(x-2\right)x}{6\left(x+1\right)x}\\ 2,\\ \dfrac{x^2+3x+2}{x^2+x}=\dfrac{x^2+x+2x+2}{x\left(x+1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)}=\dfrac{x+2}{x}\\ 3,\\ \dfrac{x^2-3x}{x^2-9}=\dfrac{x}{x+3}\)

Bài 3: 

Ta có: \(x^2-2x+4=\left(x-1\right)^2+3\ge3\forall x\)

\(\Leftrightarrow P=\dfrac{15}{x^2-2x+4}=\dfrac{15}{\left(x-1\right)^2+3}\le5\forall x\)

Dấu '=' xảy ra khi x=1