Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AB//CD.
=>ABH=BDC (2 góc so le trong).
=> ∆AHB~∆BCD(g.g).
b) ∆ABD có : DB²=AB²+AD²( Định lý Pitago)
=> DB= 15(cm).
Ta có ∆ABH~∆BCD(cmt).
=>AH/BC=AD/BD.
Hay AH=9.12/15=7,2(cm).
c)Ta có ∆AHB~∆BCD cmt.
=> HBA=CBD. (1)
Ta lại có : CBD= ADH (AB//CD).(2)
Từ 1 và 2 => HAB=ADH.
=>∆DHA~∆AHB(g.g).
S∆DHA/S∆AHB=(AD/AB)²=9/16
d) từ câu (a) và (b) => ∆BCD~∆DHA.
Cm ∆DHA~∆MDA(g.g)
Từ đó suy ra ∆BDC~∆MDA.
Sau đó cm ∆BCD~∆ADC(g.g).
=> ∆MDA~∆ADC(g.g).
=>Ad/DC=DM/DC.
=>Đpcm.
\(a,=x^2+x+4x+4=\left(x+1\right)\left(x+4\right)\\ b,=x^2+2x-3x-6=\left(x-3\right)\left(x+2\right)\\ c,=x^2-2x-3x+6=\left(x-2\right)\left(x-3\right)\\ d,=3\left(x^2-2x+5x-10\right)=3\left(x-2\right)\left(x+5\right)\\ e,=-3x^2+6x-x+2=\left(x-2\right)\left(1-3x\right)\\ f,=x^2-x-6x+6=\left(x-1\right)\left(x-6\right)\\ h,=4\left(x^2-3x-6x+18\right)=4\left(x-3\right)\left(x-6\right)\\ i,=3\left(3x^2-3x-8x+5\right)=3\left(x-1\right)\left(3x-8\right)\\ k,=-\left(2x^2+x+4x+2\right)=-\left(2x+1\right)\left(x+2\right)\\ l,=x^2-2xy-5xy+10y^2=\left(x-2y\right)\left(x-5y\right)\\ m,=x^2-xy-2xy+2y^2=\left(x-y\right)\left(x-2y\right)\\ n,=x^2+xy-3xy-3y^2=\left(x+y\right)\left(x-3y\right)\)
\(\left(x^2-2x+3\right)\left(\frac{1}{2x}-5\right)\)
\(=\frac{x^2}{2x}-5x^2-\frac{2x}{2x}+10x+\frac{3}{2x}-15\)
\(=\frac{x^2}{2x}-5x^2-16+10x+\frac{3}{2x}\)
\(=-5x^2+\frac{x^2}{2x}+\frac{20x^2}{2x}+\frac{3}{2x}-16\)
\(=-5x^2+\frac{x^2+20x+3}{2x}-16\)
học tốt
(x^2-2x+3)(1/2x-5)=1/2x^3-5x^2-x^2+10x+3/2x-15=1/2x^3-6x^2+11,5x-15
b)\(3x\left(x+3y\right)-6xy\left(x+3y\right)\)
\(=\left(3x-6xy\right)\left(x+3y\right)\)
c)\(x\left(x+y\right)-5x-5y\)
\(=x\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x-5\right)\left(x+y\right)\)
Bài 1:
b. \(3x\left(x+3y\right)-6xy\left(x+3y\right)\)
= (3x - 6xy)(x + 3y)
= 3x(1 - 2y)(x + 3y)
c. \(x\left(x+y\right)-5x-5y\)
= x(x + y) - 5(x + y)
= (x - 5)(x + y)
d. \(3\left(x-y\right)-5x\left(y-x\right)\)
= 3(x - y) + 5x(x - y)
= (3 + 5x)(x - y)
Bài 3:
a. x + 6x2 = 0
<=> x(1 + 6x) = 0
<=> \(\left[{}\begin{matrix}x=0\\1+6x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{6}\end{matrix}\right.\)
b. 2(x + 3) - x(x + 3) = 0
<=> (2 - x)(x + 3) = 0
<=> \(\left[{}\begin{matrix}2-x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
c. 5x(x - 2) - (2 - x) = 0
<=> 5x(x - 2) + (x - 2) = 0
<=> (5x + 1)(x - 2) = 0
<=> \(\left[{}\begin{matrix}5x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{5}\\x=2\end{matrix}\right.\)
d. (x + 1) = (x + 1)2
<=> (x + 1) - (x + 1)2 = 0
<=> (1 - x - 1)(x + 1) = 0
<=> -x(x + 1) = 0
<=> \(\left[{}\begin{matrix}-x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Bài 6
\(a,ĐK:x\ne\pm5\\ b,P=\dfrac{x-5+2x+10-2x-10}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{1}{x+5}\\ c,P=-3\Leftrightarrow\dfrac{1}{x+5}=-3\Leftrightarrow-3\left(x+5\right)=1\Leftrightarrow x=-\dfrac{16}{3}\\ \Leftrightarrow Q=\left(3x-7\right)^2=\left[3\cdot\left(-\dfrac{16}{3}\right)-7\right]^2=529\)
Bài 7:
\(a,ĐK:x\ne\pm3\\ b,P=\dfrac{3x-9+x+3+18}{\left(x-3\right)\left(x+3\right)}=\dfrac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{4}{x-3}\\ b,P=4\Leftrightarrow4\left(x-3\right)=4\Leftrightarrow x=4\)
Bài 4:
\(28x^3+6x^2+12x+8=0\)
\(\Leftrightarrow28x^3+14x^2-8x^2-4x+16x+8=0\)
\(\Leftrightarrow14x^2\left(2x+1\right)-4x\left(2x+1\right)+8\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(14x^2-4x+8\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x^2-\dfrac{2}{7}x+\dfrac{4}{7}\right)=0\)
\(\Leftrightarrow2x+1=0\) hay \(\left(x^2-\dfrac{2}{7}x+\dfrac{4}{7}\right)=0\)
\(\Leftrightarrow x=\dfrac{-1}{2}\) hay \(x^2-2.\dfrac{1}{7}x+\dfrac{1}{49}+\dfrac{27}{49}=0\)
\(\Leftrightarrow x=\dfrac{-1}{2}\) hay \(\left(x-\dfrac{1}{7}\right)^2+\dfrac{27}{49}=0\) (vô nghiệm vì \(\left(x-\dfrac{1}{7}\right)^2+\dfrac{27}{49}\ge\dfrac{27}{49}\))
-Vậy \(S=\left\{\dfrac{-1}{2}\right\}\)
Bài 3:
a) AB//CD \(\Rightarrow\widehat{BAM}=\widehat{ACD}\) (so le trong)
\(\widehat{AMB}=\widehat{ADC}=90^0\)
\(\Rightarrow\)△ABM∼△CAD (g-g).
b) △ADC vuông tại D \(\Rightarrow AD^2+DC^2=AC^2\Rightarrow AD^2+AB^2=AC^2\Rightarrow AC=\sqrt{AD^2+AB^2}=\sqrt{9^2+12^2}=15\left(cm\right)\)△ADC có DN phân giác \(\Rightarrow\dfrac{NA}{NC}=\dfrac{DA}{DC}\)
\(\Rightarrow\dfrac{NA}{DA}=\dfrac{NC}{DC}=\dfrac{NA+NC}{DA+DC}=\dfrac{AC}{DA+DC}\)
\(\Rightarrow NC=\dfrac{AC.DC}{DA+DC}=\dfrac{15.12}{9+12}=\dfrac{60}{7}\left(cm\right)\)
△ADC có NK//AD (cùng vuông góc với DC) \(\Rightarrow\dfrac{NK}{AD}=\dfrac{NC}{AC}\)
\(\Rightarrow NK=\dfrac{NC}{AC}.AD=\dfrac{\dfrac{60}{7}}{15}.9=\dfrac{36}{7}\left(cm\right)\)
c) △ABM∼△CAD \(\Rightarrow\dfrac{BM}{AD}=\dfrac{AM}{CD}\Rightarrow\dfrac{BM}{AM}=\dfrac{AD}{CD}\Rightarrow\dfrac{BM}{AM}=\dfrac{AN}{CN}\)
\(\Rightarrow BM.CN=AM.AN\)
△BMC∼△ABC (g-g)\(\Rightarrow\dfrac{BM}{AB}=\dfrac{BC}{AC}\Rightarrow BM=\dfrac{AB.BC}{AC}\Rightarrow\dfrac{1}{BM}=\dfrac{AC}{AB.BC}\Rightarrow\dfrac{1}{BM^2}=\dfrac{AC^2}{AB^2.BC^2}=\dfrac{AB^2+BC^2}{AB^2.BC^2}=\dfrac{1}{AB^2}+\dfrac{1}{BC^2}\)