Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các công thức lượng giác cơ bản liên quan đến góc của lớp 10:
\(sin\left(3\pi-x\right)=sin\left(2\pi+\pi-x\right)=sin\left(\pi-x\right)=sinx\)
\(sin\left(\dfrac{\pi}{2}+x\right)=cosx\Rightarrow sin\left(\dfrac{5\pi}{2}+x\right)=sin\left(2\pi+\dfrac{\pi}{2}+x\right)=sin\left(\dfrac{\pi}{2}+x\right)=cosx\)
\(cos\left(\dfrac{\pi}{2}+x\right)=-sinx\)
\(sin\left(\dfrac{3\pi}{2}+x\right)=sin\left(2\pi-\dfrac{\pi}{2}+x\right)=sin\left(-\dfrac{\pi}{2}+x\right)=-cosx\)
Nên pt tương đương:
\(3sin^2x-2sinx.cosx-5cos^2x=0\)
Với \(cosx=0\) không là nghiệm
Với \(cosx\ne0\) chia 2 vế cho \(cos^2x\)
\(\Rightarrow3tan^2x-2tanx-5=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=-1\\tanx=\dfrac{5}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(\dfrac{5}{3}\right)+k\pi\end{matrix}\right.\)
\(sin\left(3x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow sin\left(3x-\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{4}=\dfrac{\pi}{3}+k2\pi\\3x-\dfrac{\pi}{4}=\pi-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7\pi}{36}+\dfrac{k2\pi}{3}\\x=\dfrac{11\pi}{36}+\dfrac{k2\pi}{3}\end{matrix}\right.\)
\(\Rightarrow\) Nghiệm âm lớn nhất: \(x_1=\dfrac{11\pi}{36}-\dfrac{2\pi}{3}=-\dfrac{13\pi}{36}\)
Nghiệm dương bé nhất: \(x_2=\dfrac{7\pi}{36}\)
\(\Rightarrow x_1+x_2=-\dfrac{\pi}{6}\)
\(\lim\limits\dfrac{5\sqrt{3n^2+n}}{2\left(3n+2\right)}=\lim\dfrac{n\left(5\sqrt{3+\dfrac{1}{n}}\right)}{n\left(6+\dfrac{4}{n}\right)}=\lim\dfrac{5\sqrt{3+\dfrac{1}{n}}}{6+\dfrac{4}{n}}=\dfrac{5\sqrt{3}}{6}\)
\(a+b=5+6=11\)
Gọi số cần tìm là \(\overline{abcde}\).
Số cần tìm là số chẵn, nên \(e\) có \(5\) cách chọn.
\(a\ne0\) nên \(a\) có \(9\) cách chọn.
\(b\) có \(7\) cách chọn.
\(c\) có \(6\) cách chọn.
\(d\) có \(5\) cách chọn.
\(\Rightarrow\)Có thể lập được \(5.9.7.6.5=9450\) số thỏa mãn yêu cầu đề bài.
Gọi N là trung điểm AC \(\Rightarrow MN\) là đường trung bình tam giác ABC
\(\Rightarrow\left\{{}\begin{matrix}MN||AB\\MN=\dfrac{1}{2}AB=a\end{matrix}\right.\)
\(\Rightarrow\widehat{\left(AB;DM\right)}=\widehat{\left(MN;DM\right)}=\widehat{NMD}\)
\(DM=DN=\dfrac{2a.\sqrt{3}}{2}=a\sqrt{3}\) (trung tuyến tam giác đều cạnh 2a)
Định lý hàm cos cho tam giác NMD:
\(cos\widehat{NMD}=\dfrac{MN^2+DM^2-DN^2}{2MN.DM}=\dfrac{\sqrt{3}}{6}\)
a: AO=a*căn 3/3
=>SO=a*căn 6/3
b: (SA,(ABC))=(AS;AO)=góc SAO
tan SAO=SO/OA=căn 2
=>góc SAO=55 độ