K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2017

d)

\(x\ne a,x\ne b\)

đặt \(\frac{x-a}{x-b}=t\Leftrightarrow t+\frac{1}{t}=2\Leftrightarrow\frac{t^2-2t+1}{t}=0\Rightarrow t=1\)

\(\frac{x-a}{x-b}=1\Leftrightarrow\frac{\left(x-a\right)-\left(x-b\right)}{x-b}=\frac{b-a}{x-b}=0\)

Vậy: \(a\ne b\) Pt vô nghiệm

a=b phương trinhg nghiệm với mọi x khác a, b

25 tháng 1 2017

cảm ơn bạn nha

10 tháng 5 2016

a. \(\frac{mx+5}{10}\)\(\frac{x+m}{4}\)=\(\frac{m}{20}\)

\(\frac{2mx+10}{20}\)\(\frac{5x+5m}{20}\)=\(\frac{m}{20}\)

2mx +10 + 5x +5m =m

x(2m+5)= -4m -10(1)

* 2m+5= 0 => m=-5/2

(1)<=> 0x=0 vậy phương trình 1 vô số nghiệm

* 2m+5 \(\ne\)0=> m\(\ne\)-5/2

pt (1)có nghiệm duy nhất là x= -2(2m+5): (2m+5)=-2

vậy với m=-5/2 phương trình đã cho vô số nghiệm

m\(\ne\)-5/2 phương trình đã cho có nghiệm duy nhất là x=-2

 

10 tháng 5 2016

b.(m+2)x+ 4(2m+1)= \(m^2\)+4(m-1)

(m+2)x= \(m^2\)+ 4m-4-8m -4

(m+2)x=\(m^2\)-4m-8(1)

* với m+2=0 => m=-2

pt(1)<=> 0x=4

vậy phương trinh đã cho vô nghiệm

* với m+2\(\ne\)0=> m\(\ne\)-2

phương trình đã cho có nghiệm duy nhất là x=( \(m^2\)-4m-8):(m-2)

23 tháng 5 2016

ĐKXĐ : \(x\ne\frac{3}{2};-1;3\)

\(< =>\frac{x\left(2x+2\right)+x\left(2x-3\right)}{\left(2x-3\right)\left(2x+2\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)

\(< =>\frac{2x^2+2x+2x^2-3x}{\left(2x-3\right)2\left(x+1\right)}=\frac{2x.2\left(2x-3\right)}{\left(x+1\right)\left(x-3\right)2\left(2x-3\right)}\)

\(< =>\frac{\left(4x^2-x\right)\left(x-3\right)}{\left(2x-3\right)2\left(x+1\right)\left(x-3\right)}=\frac{8x^2-12x}{\left(2x-3\right)2\left(x+1\right)\left(x-3\right)}\)

\(=>4x^3-12x^2-x^2+3x=8x^2-12x\)

\(< =>4x^3-13x^2+3x-8x^2+12x=0\)

\(< =>4x^3-21x^2+15x=0\)

\(< =>x\left(4x^2-21x+15\right)=0\)

\(< =>x\left(4x^2-\frac{21}{4}.2.2x+\frac{441}{16}-\frac{201}{16}\right)=0\)

\(< =>x\left(\left(2x-\frac{21}{4}\right)^2-\sqrt{\frac{201}{16}}^2\right)=0\)

\(< =>x\left(2x-\frac{21}{4}-\frac{\sqrt{201}}{4}\right)\left(2x-\frac{21}{4}+\frac{\sqrt{201}}{4}\right)=0\)

\(< =>x\left(2x-\frac{21+\sqrt{201}}{4}\right)\left(2x-\frac{21-\sqrt{201}}{4}\right)=0\)

\(< =>\hept{\begin{cases}x=0\\2x-\frac{21+\sqrt{201}}{4}=0\\2x-\frac{21-\sqrt{201}}{4}=0\end{cases}< =>\hept{\begin{cases}x=0\\x=\frac{21+\sqrt{201}}{8}\\x=\frac{21-\sqrt{201}}{8}\end{cases}}}\)(thỏa mãn ĐKXĐ)

15 tháng 6 2018

ĐKXĐ:\(\hept{\begin{cases}a,b\ne0\\x\ne b\\x\ne c\end{cases}}\)

Ta có:\(\frac{2}{a\left(b-x\right)}-\frac{2}{b\left(b-x\right)}=\frac{1}{a\left(c-x\right)}-\frac{1}{b\left(c-x\right)}\)

      \(\Leftrightarrow\frac{2}{b-x}\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{1}{c-x}\left(\frac{1}{a}-\frac{1}{b}\right)\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{b}\right)\left(\frac{2}{b-x}-\frac{1}{c-x}\right)=0\)

Nếu \(a=b\)thì phương trình đúng với mọi nghiệm x

Nếu \(a\ne b\)thì phương trình có nghiệm

\(\frac{2}{b-x}-\frac{1}{c-x}=0\)

\(\Leftrightarrow\frac{2\left(c-x\right)}{\left(c-x\right)\left(b-x\right)}-\frac{1\left(b-x\right)}{\left(c-x\right)\left(b-x\right)}=0\)

\(\Rightarrow2c-2x-b+x=0\)

\(\Leftrightarrow-x=b-2c\)

\(\Leftrightarrow x=2c-b\left(tmđkxđ\right)\)

Vậy ..............................................................................................

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!