Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\dfrac{\sqrt{x}-x}{\sqrt{x}-1}=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=-\sqrt{x}\)
Vậy \(A=-\sqrt{x}\)
\(A=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=-\sqrt{x}\)
a: ĐKXĐ: \(x\ge\dfrac{3}{2}\)
c: ĐKXĐ: \(x< -\dfrac{5}{3}\)
d: ĐKXĐ: \(x\in R\)
e: ĐKXĐ: \(x< -\dfrac{1}{2}\)
f: ĐKXĐ: \(x\ne-1\)
g: ĐKXĐ: \(x\in R\)
h: ĐKXĐ: \(x>-\dfrac{1}{2}\)
b: ĐKXĐ: \(\left\{{}\begin{matrix}x\le\dfrac{2}{5}\\x\ne0\end{matrix}\right.\)
b: Xét ΔMNP vuông tại M có MH là đường cao
nên \(NH\cdot NP=MN^2\left(1\right)\)
Xét ΔMNK vuông tại M có MQ là đường cao
nên \(NQ\cdot NK=MN^2\left(2\right)\)
Từ (1) và (2) suy ra \(NH\cdot NP=NQ\cdot NK\)
a) ĐKXĐ: \(2x-3\ge0\Rightarrow x\ge\dfrac{3}{2}\)
b) ĐKXĐ: \(-\dfrac{2}{x}+5\ge0\Rightarrow x\ge\dfrac{2}{5}\)
c)ĐKXĐ: \(-3x-5>0\Rightarrow x>-\dfrac{5}{3}\)
d) ĐKXĐ: \(4x^2-4x+1\ge0\Rightarrow\left(2x-1\right)^2\ge0\) (luôn đúng)
Đk: tự tìm
\(pt\Leftrightarrow\sqrt{\left(x-4\right)\left(x+4\right)}+\sqrt{x-4}=0\)
\(\Leftrightarrow\sqrt{x-4}\left(\sqrt{x+4}+1\right)=0\)
Dễ thấy: \(\sqrt{x+4}\ge0\forall x\)
\(\Rightarrow\sqrt{x+4}+1\ge1>0\forall x\) (vô nghiệm)
\(\Rightarrow\sqrt{x-4}=0\Rightarrow x-4=0\Rightarrow x=4\)
Bài 1:
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HF là đường cao ứng với cạnh huyền AB, ta được:
\(AF\cdot AB=AH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)
Bài 1:
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HF là đường cao ứng với cạnh huyền AB, ta được:
\(AF\cdot AB=AH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)