K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

Cô hướng dẫn nhé. Do tính chất đối xứng, ta suy ra AB = BD; AM = MI hay BM là đường trung bình tam giác ADI.

Từ đó ta có BM // DI và DI = 2BM.

Hoàn toàn tương tự : MC // IE và IE = 2MC

Lại có MB = MC và B, M, C thẳng hàng nên D, I, E thẳng hàng và DI = IE

Vậy D đối xứng với E qua I.

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

Nếu như em vẽ trên kia, thì gọi tâm đối xứng của hình E là $I$ đi.

Hình E có tâm đối xứng I thì bất kỳ 1 điểm nào thuộc hình E cũng có điểm đối xứng với nó qua I thuộc hình E.

Điều này không đúng khi em lấy thử 1 điểm (đen) như hình:

 

 

6 tháng 8 2021

Akai Haruma Chị ơi có nghĩa là như thế nào chị nhỉ! Em đọc định nghĩa tâm đối xứng rồi mà em chưa hiểu cả hình tam giác đều nữa chị ạ! không có tâm đối xứng 

25 tháng 3 2018

D E F H I K C G x y z

a) K là điểm đối xứng với H qua DE => DE là trung trực của KH => DH=DK (1)

    I là điểm đối xứng với H qua DF => DF là trung trực của IH => DH=DI (2)

Từ (1) và (2) => DI=DK (đpcm).

b) Gọi giao điểm của IK và DF là G

Gọi Cx là tia đối của CH ; Gy là tia đối của GH; Hz là tia đối của HC

Ta có: CE là trung trực của KH => CH=CK => CE là phân giác của ^KCH

=> CD là phân giác của ^ICx (hay ^GCx)

Tương tự: GD là phân giác của ^CGy

Xét \(\Delta\)HCG: ^CGy và ^GCx là 2 góc ngoài; CD và GD lân lượt là phân giác của ^GCx và ^CGy

Mà CD giao GD tại D => HD là phân giác ^CHG

Lại có: ^CHG và ^GHz là 2 góc kề bù;

HD là phân giác của ^CHG (cmt). Mà HD \(\perp\)HF => HF là phân giác của ^GHz

Xét \(\Delta\)HCG: ^GHz và ^HGI là 2 góc ngoài

HF là phân giác ^GHz, GF là phân giác ^HGI. HF giao GF tại F

=> CF là phân giác ^HCG

Thấy: ^HCG và ^KCH là 2 góc kề bù.

Mà CE và CF lần lượt là phân giác ^KCH và ^HCG => CE\(\perp\)CF hay CF\(\perp\)DE (đpcm).

11 tháng 4 2017

a, Vì I đối xứng với H qua AC => \(\widehat{AIC}=\widehat{AHC}=90^o\)=>\(\widehat{AIC}+\widehat{AHC}=180^o\)=> AICH nội tiếp

b, Vì I đối xứng với H qua qua AC=> AI=AH

Vì I đối xứng với K qua qua AB=>AK=AH=> AI=AK

c,\(\widehat{KHB}=\widehat{ECB}\)vì cùng phụ với góc ABC (AB vuông góc với KH)

=> KH//CE. Mà CE vuông góc với AB=> CE vuông góc với AB => góc CEA =90 độ

=> Góc CEA= góc CHA =90 độ => AEHC nội tiếp. Mà AICH nội tiếp (theo a)

=> 5 điểm A,E,H,C,I cùng thuộc 1 đường tròn

11 tháng 4 2017

Cảm ơn anh nhiều

Mà anh ơi, ở câu C họ chưa cho CEB là tam giác vuông thì mình chưa sử dụng được tính chất cùng phụ với góc ABC phải ko ạ?

Anh xem lại giúp em với..