K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2020

cách đầu tiên mình sẽ dùng công thức lượng giác hóa nhé !

\(pt< =>2x^3+x^2-x+\frac{1}{3}=0\)

Đặt các giá trị : \(\Delta=b^2-3ac=1^2-3.2.\left(-1\right)=1+6=7\)

\(k=\frac{9abc-2b^3-27a^2d}{2\sqrt{|\Delta|^3}}=\frac{9.2.\left(-1\right)-2.1^3-\frac{27.2^2.1}{3}}{2\sqrt{7^3}}=-\frac{18+2+36}{2.\sqrt{343}}=-\frac{28}{7\sqrt{7}}=-\frac{4}{\sqrt{7}}\)

Do \(\Delta>0;|k|=|-\frac{4}{\sqrt{7}}|=\frac{4}{\sqrt{7}}>1\)

Suy ra nghiệm của phương trình trên có dạng :

 \(x=\frac{\sqrt{\Delta}|k|}{3.a.k}\left(\sqrt[3]{|k|+\sqrt{k^2-1}}+\sqrt[3]{|k|-\sqrt{k^2-1}}\right)-\frac{b}{3a}\)

\(=\frac{\sqrt{7}.\frac{4}{\sqrt{7}}}{3.2.\left(-\frac{4}{\sqrt{7}}\right)}\left(\sqrt[3]{\frac{4}{\sqrt{7}}+\sqrt{\frac{16}{7}-1}}+\sqrt[3]{\frac{4}{\sqrt{7}}-\sqrt{\frac{16}{7}-1}}\right)-\frac{1}{3.2}\)

\(=-\frac{\sqrt{7}}{6}\left(\sqrt[3]{\frac{4}{\sqrt{7}}+\frac{3\sqrt{7}}{7}}+\sqrt[3]{\frac{4}{\sqrt{7}}-\frac{3\sqrt{7}}{7}}\right)-\frac{1}{6}\)

\(=-\frac{\sqrt{7}}{6}\left(\sqrt[3]{\frac{4+3}{\sqrt{7}}}+\sqrt[3]{\frac{4-3}{\sqrt{7}}}\right)-\frac{1}{6}=-\frac{\sqrt{7}}{6}\left(\sqrt[3]{\sqrt{7}}+\sqrt[3]{\frac{1}{\sqrt{7}}}\right)-\frac{1}{6}\)

Vậy \(x=-\frac{\sqrt{7}}{6}\left(\sqrt[3]{\sqrt{7}}+\sqrt[3]{\frac{1}{\sqrt{7}}}\right)-\frac{1}{6}\)

10 tháng 10 2020

và đây là phương pháp Cardano ^^

\(pt< =>x^3+\frac{1}{2}x^2-\frac{1}{2}x+\frac{1}{6}=0\)

Đặt \(x=y-\frac{1}{6}\)thì phương trình trở thành : \(\left(y-\frac{1}{6}\right)^3+\frac{1}{2}\left(y-\frac{1}{6}\right)^2-\frac{1}{2}\left(y-\frac{1}{6}\right)+\frac{1}{6}=0\)

\(< =>y^3-3.y^2.\frac{1}{6}+3.y.\frac{1}{36}-\frac{1}{216}+\frac{1}{2}\left(y^2-\frac{y}{3}+\frac{1}{36}\right)-\frac{1}{2}y+\frac{1}{12}+\frac{1}{6}=0\)

\(< =>y^3-\frac{y^2}{2}+\frac{y}{12}-\frac{1}{216}+\frac{y^2}{2}-\frac{y}{6}+\frac{1}{72}-\frac{y}{2}+\frac{1}{4}=0\)

\(< =>y^3+\frac{y}{12}-\frac{2y}{12}-\frac{6y}{12}+\frac{1}{4}+\frac{1}{72}-\frac{1}{216}=0\)\(< =>y^3+\frac{7}{12}y+\frac{7}{27}=0\)

Đặt \(y=u+v\)sao cho \(uv=-\frac{7}{36}\)Khi đó ta được phương trình : \(\left(u+v\right)^3+\frac{7}{12}\left(u+v\right)+\frac{7}{27}=0\)

\(< =>u^3+v^3+3uv\left(u+v\right)+\frac{7}{12}\left(u+v\right)+\frac{7}{27}=0\)

\(< =>u^3+v^3+\left(u+v\right)\left(3uv+\frac{7}{12}\right)+\frac{7}{27}\)\(< =>u^3+v^3=-\frac{7}{27}\)(*) (Do 3uv + 7/12 = 0) 

Từ \(uv=-\frac{7}{36}< =>u^3v^3=-\frac{343}{46656}\)(**) Từ (*) và (**) Suy ra được hệ \(\hept{\begin{cases}u^3+v^3=-\frac{7}{27}\\u^3v^3=-\frac{343}{46656}\end{cases}}\)

Theo định lý Vi-ét , \(u^3\)và \(v^3\)là 2 nghiệm của phương trình \(x^2+\frac{7}{27}x-\frac{343}{46656}=0\)

Đặt giá trị \(\Delta=\frac{\left(\frac{7}{27}\right)^2}{4}+\frac{343}{46656}=\frac{49}{729.4}+\frac{343}{46656}=\frac{1127}{46656}>0\)

Do \(\Delta>0\)nên ta được : \(u^3=-\frac{\frac{7}{27}}{2}+\sqrt{\frac{1127}{46656}}=-\frac{7}{54}+\frac{4}{25}=\frac{41}{1350}\)

\(v^3=-\frac{\frac{7}{27}}{2}-\sqrt{\frac{1127}{46656}}=-\frac{7}{54}-\frac{4}{25}=-\frac{391}{1350}\)

Như vậy phương trình biến y có nghiệm là : \(y=\sqrt[3]{\frac{\left(-\frac{7}{27}\right)^2}{2}+\sqrt{\frac{1127}{46656}}}+\sqrt[3]{\frac{\left(-\frac{7}{27}\right)^2}{2}-\sqrt{\frac{1127}{46656}}}\)

\(=\sqrt[3]{\frac{49}{729.2}+\frac{4}{25}}+\sqrt[3]{\frac{49}{729.2}-\frac{4}{25}}=\sqrt[3]{\frac{49}{1458}+\frac{4}{25}}+\sqrt[3]{\frac{49}{1458}-\frac{4}{25}}\)

Suy ra \(x=\sqrt[3]{\frac{49}{1458}+\frac{4}{25}}+\sqrt[3]{\frac{49}{1458}-\frac{4}{25}}-\frac{1}{6}\)

mình có vẻ tính nhầm chỗ nào đó rồi , bạn cố gắng tìm lại lỗi sai nhé ^^

11 tháng 1 2022
Not biếtmdnhdhd
11 tháng 1 2022

Hummmm

14 tháng 2 2020

Mình khẳng định với bạn là đề bài sai bởi vì x2+2x+3 k đưa về dang hằng đẳng thức đc cũng như quy tách ra để tính đc

14 tháng 2 2020

chắc chắn đúng đề nha !!!!

b2

\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)

14 tháng 8 2017

Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)

Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)

và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)

Do đó \(VT\ge VF\)

Dấu = xảy ra khi\(x=\frac{1}{2}\)

10 tháng 2 2020

\(\hept{\begin{cases}x^2=y^3-3y^2+2y\\y^2=x^3-3x^2+2x\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\x^2-y^2=y^3-x^3-3y^2+3x^2+2y-2x\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\2\left(y-x\right)\left(y+x\right)=\left(y-x\right)\left(y^2+xy+x^2\right)+2\left(y-x\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\\left(y-x\right)\left[xy+\left(x-1\right)^2+\left(y-1\right)^2\right]=0\end{cases}}\)

Theo Cauchy-schwarz có: \(\frac{\left(x-1\right)^2}{1}+\frac{\left(1-y\right)^2}{1}\ge\frac{\left(x-y\right)^2}{2}\)Dấu "=" xảy ra <=> x+y=2 (1)

\(\Rightarrow xy+\left(x-1\right)^2+\left(y-1\right)^2\ge xy+\frac{x^2-2xy+y^2}{2}=x^2+y^2\ge0\) Dấu bằng xảy ra <=> x=y=0 (2)

Từ (1) và (2) => \(xy+\left(x-1\right)^2+\left(y-1\right)^2>0\)

\(\Rightarrow x=y\)

=> Hệ phương trình \(\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\y^2=y^3-3y^2+2y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\0=y^3-4y^2+2y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x^2=y^3-3y^2+2y\\0=y^3-4y^2+2y\end{cases}}\)

Tự làm nốt nhé

27 tháng 10 2020

ĐK: \(-2\le x\le3\)

PT \(\Leftrightarrow\sqrt{3-x}=3-\sqrt{x+2}\)

\(\Leftrightarrow3-x=9+x+2-6\sqrt{x+2}\)

\(\Leftrightarrow6\sqrt{x+2}=2x+8\)

\(\Leftrightarrow36x+72=4x^2+32x+64\)

\(\Leftrightarrow4x^2-4x-8=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\) (TM)

Vậy phương trình có tập nghiệm \(S=\left\{-1;2\right\}\)

27 tháng 10 2020

\(=\sqrt{3-x}=3-\sqrt{x+2}\Leftrightarrow3-x=9-6\sqrt{x+2}+x+2\)

\(\Leftrightarrow2x+8-6\sqrt{x+2}=0\Leftrightarrow x+4-3\sqrt{x+2}\)

\(\Leftrightarrow\left(x+2\right)-2.\frac{3}{2}\sqrt{x+2}+\frac{9}{4}-\frac{1}{4}=0\)

\(\Leftrightarrow\left(\sqrt{x+2}-\frac{3}{2}\right)^2=\frac{1}{4}\Rightarrow\left[{}\begin{matrix}\sqrt{x+2}-\frac{3}{4}=\frac{1}{2}\\\sqrt{x+2}-\frac{3}{4}=-\frac{1}{2}\end{matrix}\right.\)

2 tháng 9 2020

\(ĐKXĐ:x\ge\frac{1}{2}\)

Phương trình đã cho tương đương :

\(4.\left(x^2+1\right)+3.x.\left(x-2\right).\sqrt{2x-1}=2x^3+10x\)

\(\Leftrightarrow3x\left(x-2\right)\sqrt{2x-1}=2x^3-8x^2+10x-4\)

\(\Leftrightarrow3x.\left(x-2\right).\sqrt{2x-1}=2.\left(x-2\right).\left(x-1\right)^2\) (1)

Dễ thấy \(x=2\) là một nghiệm của (1). Xét \(x\ne2\). Khi đó ta có :

\(3x.\sqrt{2x-1}=2.\left(x-1\right)^2\)(*)

Đặt \(\sqrt{2x-1}=a\left(a\ge0\right)\Rightarrow-a^2=1-2x\)

Khi đó pt (*) có dạng :

\(3x.a=2.\left(x^2-a^2\right)\)

\(\Leftrightarrow2x^2-3xa-2a^2=0\)

\(\Leftrightarrow2x^2-4ax+xa-2a^2=0\)

\(\Leftrightarrow2x.\left(x-2a\right)+a.\left(x-2a\right)=0\)

\(\Leftrightarrow\left(x-2a\right)\left(a+2x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2a=x\\a=-2x\end{cases}}\)

+) Với \(2a=x\Rightarrow2\sqrt{2x-1}=x\left(x\ge0\right)\)

\(\Leftrightarrow x^2=4.\left(2x-1\right)\)

\(\Leftrightarrow x^2-8x+4=0\)

\(\Leftrightarrow x=4\pm2\sqrt{3}\) ( Thỏa mãn )

+) Với \(a=-2x\Rightarrow\sqrt{2x-1}=-2x\left(x\le0\right)\)

\(\Leftrightarrow4x^2=2x-1\)

\(\Leftrightarrow4x^2-2x+1=0\) ( Vô nghiệm )

Vậy phương trình đã cho có tập nghiệm \(S=\left\{4\pm2\sqrt{3},2\right\}\)