Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1...Chia cả hai vế cho xyz ta được
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz
<=>3/x + 3/y + 3/z = 4
<=>1/x + 1/y + 1/z = 4/3
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z
+nếu x>=4=> y>=4;z>=4
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm
+nếu x=1 => 1+1/y+1/z=4/3
<=> 1/y+1/z=1/3
<=> 3(y+z)=yz
<=> 3y+3z-yz=0
<=> 3y-yz+3z-9=-9
<=> y(3-z)-3(3-z)=-9
<=> (3-z)(3-y)=9
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương
mà 9=3*3=1*9=9*1
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương)
+nếu x=2 => 1/2+1/y+1/z=4/3
<=> 1/y+1/z=5/6
<=> 6(y+z)=5yz
<=> 6y+6z-5yz=0
<=> 30y-25yz+30z-36=-36
<=> 5y(6-5z)-6(6-5z)=-36
<=> (5z-6)(5y-6)=36
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4
Giải tương tự phần trên ta được
y=2,z=3 hoặc y=3,z=2
+nếu x=3 => 1/3+1/y+1/z=4/3
<=> 1/y+1/z=1
Giải tương tự phần trên ta được y=z=2
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)
Đây là bài gần giống nhé
a) Ta có: \(y^2=1+x+x^2+x^3+x^4\)
\(\Leftrightarrow4y^2=4+4x+4x^2+4x^3+4x^4\)
\(\Rightarrow4x^4+4x^3+x^2< 4y^2\le4x^4+x^2+4+4x^3+8x^2+4x\)
\(\Rightarrow\left(2x^2+x\right)^2< 4y^2\le\left(2x^2+x+2\right)^2\)
\(\Rightarrow\orbr{\begin{cases}4y^2=\left(2x^2+x+1\right)^2\\4y^2=\left(2x^2+x+2\right)^2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+1\right)^2\\4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+2\right)^2\end{cases}}\)
đến đây xét từng trường hợp là ra
b) Do \(13x^2\ge0\)nên \(24y^2\le2015\)
\(\Rightarrow y^2\le83\)
Đến đây xét các trường hợp của y là được
để tui lm cho
áp dụng đẳng thức \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
<=> \(1-3xyz=1\left(1-xy-yz-zx\right)\)
<=> \(3xyz=xy+yz+zx\)
mặt khác ta có 1=(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2zx
<=> 1=1+2(xy+yz+zx)
<=> xy+yz+zx=0
<=> 3xyz=0
<=> \(\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
đến đấy cậu tự lm nốt nhé
mà pn tuấn anh j ơi ,, bài này mk tìm đc 3 cặp nghiệm luôn á (x;y;z)=(0;0;1);(0;1;0);(1;0;0)
pn giải cụ thể ra giúp mk vs