K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2016

\(x=\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}\)(ĐK :\(x\ge1\))

\(\Leftrightarrow x-\sqrt{1-\frac{1}{x}}=\sqrt{x-\frac{1}{x}}\)

\(\Leftrightarrow x^2+1-\frac{1}{x}-2x\sqrt{1-\frac{1}{x}}=x-\frac{1}{x}\)

\(\Leftrightarrow x^2-x+1-2x\sqrt{1-\frac{1}{x}}=0\)

\(\Leftrightarrow\left(x^2-x\right)-2\sqrt{x^2-x}+1=0\)

\(\Leftrightarrow\left(\sqrt{x^2-x}-1\right)^2=0\)

\(\Rightarrow\sqrt{x^2-x}=1\Leftrightarrow x^2-x-1=0\)

\(\Rightarrow x=\frac{1+\sqrt{5}}{2}\)(nhận) hoặc \(x=\frac{1-\sqrt{5}}{2}\)(loại)

Vậy tập nghiệm của phương trình : \(S=\left\{\frac{1+\sqrt{5}}{2}\right\}\)

Về hướng giải bài bằng bất đẳng thức Cosi mình chưa nghĩa ra :))

11 tháng 1 2022
Not biếtmdnhdhd
11 tháng 1 2022

Hummmm

AH
Akai Haruma
Giáo viên
22 tháng 7 2021

Lời giải:
ĐK: $x,y,z\geq 0$

Áp dụng BĐT Cô-si:

\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\geq 3\sqrt[3]{\frac{xyz}{(x+1)(y+1)(z+1)}}\)

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\sqrt[3]{\frac{1}{(x+1)(y+1)(z+1)}}\)

Cộng theo vế và thu gọn:

\(3\geq 3.\frac{\sqrt[3]{xyz}+1}{\sqrt[3]{(x+1)(y+1)(z+1)}}\Leftrightarrow (x+1)(y+1)(z+1)\geq (1+\sqrt[3]{xyz})^3\)

Dấu "=" xảy ra khi $x=y=z$

Thay vào pt $(1)$ thì suy ra $x=y=z=1$

12 tháng 8 2019

Mk bít dùng liên hợp thui

\(\sqrt{3x+4}-2+\sqrt{2x}+\sqrt{1-x}-1=0\)

\(\Leftrightarrow\sqrt{x}\left(\frac{3\sqrt{x}}{\sqrt{3x+4}+2}+\sqrt{2}-\sqrt{x}\right)=0\)

heheh đến đây mk chưa giải 

sai thì thông cảm nhá

2 tháng 12 2017

ĐK : \(\orbr{\begin{cases}x>0\\x< -1\end{cases}}\)

Đặt \(\sqrt{\frac{x+1}{x}}=t>0\)

\(bpt\Leftrightarrow\frac{1}{t^2}-2t>3\Leftrightarrow2t^3+3t^2-1< 0\Leftrightarrow\left(2t-1\right)\left(t+1\right)^2< 0\Leftrightarrow2t-1< 0\)(do \(\left(t+1\right)^2>0\))

       \(\Leftrightarrow t< \frac{1}{2}hay\sqrt{\frac{x+1}{x}}< \frac{1}{2}\Rightarrow\frac{x+1}{x}< \frac{1}{4}\)

Với x >0, ta có: \(\frac{x+1}{x}< \frac{1}{4}\Leftrightarrow4\left(x+1\right)< 1\Leftrightarrow x< -\frac{3}{4}\left(trái.với.gt:x>0\right)\)

Với x<-1 ta có: \(\frac{x+1}{x}< \frac{1}{4}\Rightarrow4\left(x+1\right)>x\Rightarrow x>-\frac{3}{4}\Rightarrow-\frac{3}{4}< x< -1\)

Vậy nghiệm của hệ phương trình là: \(-\frac{3}{4}< x< -1\)

20 tháng 5 2017

Thích đặt ẩn phụ thì đặt vậy

Đặt \(\frac{1}{\sqrt{1-x^2}}=a\left(a>0\right)\)  thì PT trở thành

\(a^2=3a-1\)

\(\Leftrightarrow\orbr{\begin{cases}a=\frac{3+\sqrt{5}}{2}\\a=\frac{3-\sqrt{5}}{2}\end{cases}}\)

Thế vô làm tiếp nhé

20 tháng 5 2017

làm hết ra lun chớ :(