Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(x-5\right)\left(x-5+3\right)=0\Leftrightarrow x=5;x=2\)
b, \(-4x=\dfrac{274}{21}\Leftrightarrow x=-\dfrac{137}{42}\)
c, đk x khác - 2 ; 2
\(x^2-3x+2-x^2-2x=6-7x\Leftrightarrow-5x+2=6-7x\)
\(\Leftrightarrow2x-4=0\Leftrightarrow x=2\left(ktm\right)\)
Vậy pt vô nghiệm
b)
ĐKXĐ: \(x\notin\left\{2;3;\dfrac{1}{2}\right\}\)
Ta có: \(\dfrac{x+4}{2x^2-5x+2}+\dfrac{x+1}{2x^2-7x+3}=\dfrac{2x+5}{2x^2-7x+3}\)
\(\Leftrightarrow\dfrac{x+4}{\left(x-2\right)\left(2x-1\right)}+\dfrac{x+1}{\left(x-3\right)\left(2x-1\right)}=\dfrac{2x+5}{\left(2x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{\left(x+4\right)\left(x-3\right)}{\left(x-2\right)\left(2x-1\right)\left(x-3\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)\left(2x-1\right)}=\dfrac{\left(2x+5\right)\left(x-2\right)}{\left(2x-1\right)\left(x-3\right)\left(x-2\right)}\)
Suy ra: \(x^2-3x+4x-12+x^2-2x+x-2=2x^2-4x+5x-10\)
\(\Leftrightarrow2x^2-14=2x^2+x-10\)
\(\Leftrightarrow2x^2-14-2x^2-x+10=0\)
\(\Leftrightarrow-x-4=0\)
\(\Leftrightarrow-x=4\)
hay x=-4(nhận)
Vậy: S={-4}
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
\(F=-3\left(x-8\right)\left(2x+1\right)-\left(x+5\right)\left(2-3x\right)-4x\left(x-6\right)\)
\(=-3\left(-3-8\right)\left(-6+1\right)-\left(5-3\right)\left(2+9\right)+12\left(-9\right)\)
\(=-3\left(-11\right)\left(-5\right)-\left(-2\right)11-12.9\)
\(=-165+22-108=22-273=-251\)
\(G=\left(5x-4\right)\left(5-2x\right)-7x\left(x^2-4x+3\right)+\left(x^2-4x\right)\left(7x-2\right)\)
\(=\left(5-4\right)\left(5-2\right)-7\left(1-4+3\right)+\left(1-4\right)\left(7-2\right)\)
\(=3-7.0+5.\left(-3\right)=3-15=-12\)
\(H=\left(-3x+5\right)\left(x-6\right)-\left(x-1\right)\left(x^2-2x+3\right)+\left(x+2\right)\left(x^2-3\right)\)
\(=\left(3+5\right)\left(-1-6\right)-\left(-1-1\right)\left(1+2+3\right)+\left(-1+2\right)\left(1-3\right)\)
\(=8\left(-7\right)-\left(-2\right)6+1\left(-2\right)=-56+12-2=-46\)
\(L=5x\left(x-1\right)\left(2x+3\right)-10x\left(x^2-4x+5\right)-\left(x-1\right)\left(x-4\right)\)
\(=-\frac{5}{3}\left(-\frac{4}{3}\right)\left(-\frac{2}{3}+3\right)+\frac{10}{3}\left(\frac{1}{9}+\frac{4}{3}+5\right)-\left(-\frac{4}{3}\right)\left(-\frac{1}{3}-4\right)\)
\(=\frac{20}{9}\left(\frac{7}{3}\right)+\frac{10}{3}\left(\frac{13}{9}+5\right)+\frac{4}{3}\left(-\frac{13}{3}\right)\)
\(=\frac{140}{27}+\frac{10}{3}.\frac{58}{9}-\frac{52}{9}\)
\(=\frac{140}{27}+\frac{580}{27}-\frac{156}{27}=\frac{140+580-156}{27}=\frac{720-156}{27}=\frac{564}{27}\)
\(M=-7x\left(x-5\right)-\left(x-1\right)\left(x^2-x-2\right)+x^2\left(x-3\right)-5x\left(x-8\right)\)
\(=\frac{-7}{2}\left(\frac{1}{2}-5\right)+\frac{\left(\frac{1}{4}-\frac{1}{2}-2\right)}{2}+\frac{1}{4}\left(\frac{1}{2}-3\right)-\frac{5}{2}\left(\frac{1}{2}-8\right)\)
\(=\frac{7}{2}.\frac{9}{2}-\frac{9}{8}-\frac{1}{4}.\frac{5}{2}+\frac{5}{2}.\frac{15}{2}\)
\(=\frac{63}{4}-\frac{9}{8}-\frac{5}{8}+\frac{75}{4}=\frac{138}{4}-\frac{7}{4}=\frac{131}{4}\)
\(\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\left(x\ne\pm2\right)\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow\frac{2x^2+4}{x^2-4}=\frac{2x^2+4}{x^2-4}\)
Vậy phương trình này có vô số nghiệm x thỏa mãn trừ x khác 2 và -2