K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

x4 - 2y2 = 1 => x4 - 1 = 2y( 1 )

Dễ thấy : x lẻ \(x^4\equiv1\) ( mod 4 )

=> y2 chẵn => y chẵn

Đặt \(x=2k+1;y=2n\left(k;n\in Z\right)\). Ta có :

\(\left(4k^2+4k+1\right)^2-1=8n^2\)

\(\Leftrightarrow\left(4k^2+4k+2\right)\left(4k^2+4k\right)=8n^2\)

\(\Leftrightarrow\left(2k^2+2k+1\right)\left(k^2+k\right)=n^2\)

Với k = 0 thì \(y=0\) ( tm )

Thay y = 0 vào ( 1 ) ta được \(x=\pm1\) ( tm )

Với \(k\ge1\)

Đặt \(k^2+k=m\)

\(\Rightarrow\left(2m+1\right)m=n^2\)

=> m ; 2m + 1 là SCP

Ta lại có : \(k^2< k^2+k< \left(k+1\right)^2\) 

Vì k2 + k kẹp giữa 2 SCP liên tiếp nên k2 + k không thể là SCP

Vậy pt có các nghiệm ( x ; y ) là : ( 1 ; 0 ) ; ( - 1 ; 0 ) 

24 tháng 8 2020

Tohru ( ʚ๖ۣۜTεαм ๖ۣۜFℓαʂɦɞ )  làm vậy có dài không bạn?

\(x^4-2y^2=1\Leftrightarrow x^4=1+2y^2\)

Do \(\hept{\begin{cases}x^4\ge0\forall x\\2y^2\ge0\forall y\end{cases}}\)

Để x,y nguyên => \(\hept{\begin{cases}x^4=1\\2y^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}}\)

a: \(\Leftrightarrow\dfrac{y+5}{y\left(y-5\right)}-\dfrac{y-5}{2y\left(y+5\right)}=\dfrac{y+25}{2\left(y-5\right)\left(y+5\right)}\)

\(\Leftrightarrow2\left(y+5\right)^2-\left(y-5\right)^2=y^2+25y\)

=>\(2y^2+20y+50-y^2+10y-25=y^2+25y\)

=>30y+25=25y

=>5y=-25

=>y=-5(loại)

b: \(\Leftrightarrow x\left(x+1\right)+x\left(x-3\right)=4x\)

=>x^2+x+x^2-3x-4x=0

=>2x^2-6x=0

=>2x(x-3)=0

=>x=0(nhận) hoặc x=3(loại)

c: =>x^2-9-6(2x+7)=-13(x+3)

=>x^2-9-12x-42+13x+39=0

=>x^2+x-6=0

=>(x+3)(x-2)=0

=>x=2(nhận) hoặc x=-3(loại)

3 tháng 8 2016

Ngu quá có thế cũng không làm được

9 tháng 1 2021

Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).

Vậy pt vô nghiệm nguyên.

9 tháng 1 2021

2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).

19 tháng 1 2019

Ta thấy x = 1 không phải nghiệm của phương trình nên nhân 2 vế của phương trình với x - 1 ta có: 

⇔ x = 1(KTM)

Vậy phương trình đã cho vô nghiệm.

16 tháng 10 2017

22 tháng 12 2021

\(2x^2-4xy+2y^2\\ =2\left(x^2-2xy+y^2\right)\\ =2\left(x-y\right)^2\)

22 tháng 12 2021

a) 2x2-4xy+2y2
= 2x2-2xy-2xy+2y2
= 2x(x-y)-2y(x-y)
= (2x-2y)(x-y)
b) x2+4xy+4y2-9
= (x+2y)2-32
= (x+2y-3)(x+2y+3)
c) x4-x3y+x-y
= x3(x-y)+(x-y)
= (x3+1)(x-y)

9 tháng 6 2017

Tìm được m = 25

13 tháng 1 2022

xy - x + 2(y - 1) = 2

x(y - 1) + 2(y - 1) = 2

(x + 2)(y - 1) = 2

TH1: x + 2 = 1 và y - 1 = 2 <=> x = -1 và y = 3

TH2: x + 2 = 2 và y - 1 = 1 <=> x = 0 và y = 2

TH3: x + 2 = -1 và y - 1 = -2 <=> x = -3 và y = -1

TH4: x + 2 = -2 và y - 1 = -1 <=> x = -4 và y = 0