Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{2013}+\frac{x-2}{2012}+\frac{x-3}{2011}=\frac{x-4}{2010}+\frac{x-5}{2009}+\frac{x-6}{2008}\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2013}-1\right)+\left(\frac{x-2}{2012}-1\right)+\left(\frac{x-3}{2011}-1\right)=\left(\frac{x-4}{2010}-1\right)+\left(\frac{x-5}{2009}-1\right)+\left(\frac{x-6}{2008}-1\right)\)
\(\Leftrightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2013}{2011}=\frac{x-2014}{2010}+\frac{x-2014}{2009}+\frac{x-2014}{2008}\)
\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
tự làm nốt~
kudo shinichi làm sai ở chỗ:
\(\frac{x-2013}{2011}\)phải là \(\frac{x-2014}{2011}\)mới đúng nhé
Ta có :
\(\frac{x+1}{2012}+\frac{x+2}{2011}+\frac{x+3}{2010}=\frac{x+4}{2009}+\frac{x+5}{2008}+\frac{x+6}{2007}\)
\(\left(\frac{x+1}{2012}+1\right)+\left(\frac{x+2}{2011}+1\right)+\left(\frac{x+3}{2010}+1\right)=\left(\frac{x+4}{2009}+1\right)+\left(\frac{x+5}{2008}+1\right)+\left(\frac{x+6}{2007}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+2013}{2012}+\frac{x+2013}{2011}+\frac{x+2013}{2010}=\frac{x+2013}{2009}+\frac{x+2013}{2008}+\frac{x+2013}{2007}\)
\(\Leftrightarrow\)\(\left(x+2013\right).\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)=\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\right)\)
\(\Leftrightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}=\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(1\right)\)
Mà \(\frac{1}{2012}< \frac{1}{2009}\)\(;\)\(\frac{1}{2011}< \frac{1}{2008}\)\(;\)\(\frac{1}{2010}< \frac{1}{2007}\)
\(\Rightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}< \frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra không có giá trị nào của \(x\)thoả mãn đề bài
Vậy không có gía trị nào của \(x\)hay \(x\in\left\{\varnothing\right\}\)
\(\frac{x-1}{2013}+\frac{x-2}{2012}+\frac{x-3}{2011}=\frac{x-4}{2010}+\frac{x-5}{2009}+\frac{x-6}{2008}\) ( có lẽ đề như này )
\(\Leftrightarrow\frac{x-1}{2013}-1+\frac{x-2}{2012}-1+\frac{x-3}{2011}-1=\frac{x-4}{2010}-1+\frac{x-5}{2009}-1+\frac{x-6}{2008}-1\)
\(\Leftrightarrow\frac{x-2014}{2013}+\frac{x-2014}{2012}+\frac{x-2014}{2011}-\frac{x-2014}{2010}-\frac{x-2014}{2009}-\frac{x-2014}{2008}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)
\(\Leftrightarrow x-2014=0\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}-\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\right)\)
\(\Leftrightarrow x=2014\)
...
Ta có : \(x^2+9x+20=x^2+4x+5x+20=\left(x+4\right)\left(x+5\right)\)
\(x^2+11x+30=x^2+5x+6x+30=\left(x+5\right)\left(x+6\right)\)
\(x^2+13x+42=x^2+6x+7x+42=\left(x+6\right)\left(x+7\right)\)
\(\Rightarrow Pt\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\) (*)\(ĐKXĐ:x\ne-4;x\ne-5;x\ne-6;x\ne-7\)
(*) \(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow\frac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow3.18=x^2+4x+7x+28\)
\(\Leftrightarrow x^2-2x+13x-26=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+13\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+13=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-13\left(tm\right)\end{cases}}}\)
\(\frac{x+1}{2011}+\frac{x+2}{2010}=\frac{x+3}{2009}+\frac{x+4}{2008}\Leftrightarrow\frac{x+1}{2011}+1+\frac{x+2}{2010}+1=\frac{x+3}{2009}+1+\frac{x+4}{2008}+1\)
\(\Leftrightarrow\frac{x+1}{2011}+\frac{2011}{2011}+\frac{x+2}{2010}+\frac{2010}{2010}=\frac{x+3}{2009}+\frac{2009}{2009}+\frac{x+4}{2008}+\frac{2008}{2008}\)
\(\Leftrightarrow\frac{x+1+2011}{2011}+\frac{x+2+2010}{2010}=\frac{x+3+2009}{2009}+\frac{x+4+2008}{2008}\)
\(\Leftrightarrow\frac{x+2012}{2011}+\frac{x+2012}{2010}=\frac{x+2012}{2009}+\frac{x+2012}{2008}\)
\(\Leftrightarrow\left(x+2012\right)\left(\frac{1}{2011}+\frac{1}{2010}\right)=\left(x+2012\right)\left(\frac{1}{2009}+\frac{1}{2008}\right)\)
\(\Leftrightarrow\left(x+2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}=0\right)\)
mà 1/2011+1/2010-1/2009-1/2008 khác 0
\(\Rightarrow x+2012=0\Rightarrow x=-2012\)
\(\left(3x-2\right)^2-x\left(9x-2\right)=24\Leftrightarrow9x^2-12x+4-9x^2+2x=24\)
\(\Leftrightarrow-10x+4=24\Leftrightarrow-10x=20\Leftrightarrow x=-2\)
1; Ta có : x+1/2011 + x+2/2010 = x+3/2009 + x+4/ 2008
Suy ra: 2+(x+1/2011 + x+2/2010 ) = 2+( x+3/2009 + x+4/2008)
suy ra ban tach 2=1+1 roi cong 1 voi tưng phân số trên nha sẽ ra kết quả ngay thôi
2; gợi ý nè : (3x-2)^2 =(3x)^2 + 2*3x*2+2^2
\(\frac{x-2}{2012}+\frac{x-3}{2011}+\frac{x-4}{2010}+\frac{x-2029}{5}=0\)
\(\Leftrightarrow\frac{x-2}{2012}-1+\frac{x-3}{2011}-1+\frac{x-4}{2010}-1+\frac{x-2029}{5}+3=0\)
\(\Leftrightarrow\frac{x-2014}{2012}+\frac{x-2014}{2011}+\frac{x-2014}{2010}+\frac{x-2014}{5}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+\frac{1}{5}\right)=0\)
\(\Leftrightarrow x-2014=0\).Do \(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+\frac{1}{5}\ne0\)
\(\Leftrightarrow x=2014\)
\(\frac{x+1}{2010}+\frac{x+2}{2009}+\frac{x+3}{2008}+...+\frac{x+2010}{1}=\left(-2010\right)\)
\(\Rightarrow\left(\frac{x+1}{2010}+1\right)+\left(\frac{x+2}{2009}+1\right)+...+\left(\frac{x+2010}{1}+1\right)=-2010+2010\)
\(\Rightarrow\frac{x+2011}{2010}+\frac{x+2011}{2009}+...+\frac{x+2011}{1}=0\)
\(\Rightarrow\left(x+2011\right)\left(1+\frac{1}{2}+...+\frac{1}{2009}+\frac{1}{2010}\right)=0\)
\(\Rightarrow x+2011=0\Leftrightarrow x=-2011\)
Phương trình đã cho tương đương với :
\(\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+\frac{x-3}{2010}-1+...+\frac{x-2012}{1}-1+2012=2012\)
\(\Leftrightarrow\)\(\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+...+\frac{x-2013}{1}=0\)
\(\Leftrightarrow\)\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+...+\frac{1}{1}\right)=0\)
Tìm x theo như toán lớp 6 nha
\(x-2013=0\)
\(\Leftrightarrow\)\(x=2013\)
ta có pt
<=>\(\frac{x-1}{2012}-1+\frac{x-2}{2011}-1+...+\frac{x-2012}{1}-1=0\)
<=>\(\frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)
<=>\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+...+\frac{1}{1}\right)=0\Leftrightarrow x-2013=0\Leftrightarrow x=2013\)
^_^