Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)\(\Leftrightarrow\frac{x^2+3x+2+x^2-3x+2}{x^2-4}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow2\left(x^2+2\right)=2\left(x^2+2\right)\)(luôn đúng)
Vậy pt có vô số nghiệm
\(b,\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(2x+3-x+5\right)=0\)\(\Leftrightarrow\left(\frac{-4x+10}{2-7x}\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-4x+10=0\\x+8=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}\)
Mấy câu rút gọn bạn quy đồng nha
Ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow\frac{yz+zx+xy}{xyz}=0\) (Quy đồng)
\(\Rightarrow yz+zx+xy=0\)
Vì:
\(\left(x^2y^2+y^2z^2+z^2x^2\right)^2=0\)
\(2\left(x^4y^{ }^4+y^4z^4+z^4x^4\right)=0\)
Nên.....(tự kết luận nha)
giải chi tiết ( vì sao ) đoạn dưới đây = 0 hộ mk vs :
vì \(\left(x^2y^2+y^2z^2+z^2x^2\right)^2=0\)
\(2\left(x^4y^4+y^4z^4+z^4x^4\right)=0\)
ĐKXĐ: x\(x\ne\)1,-1
a) pt <=> \(\left(\frac{x}{x-1}+\frac{x}{x+1}\right)^2-\frac{2x^2}{x^2-1}=\frac{10}{9}\)
<=> \(\frac{4x^4}{\left(x^2-1\right)^2}-\frac{2x^2}{x^2-1}=\frac{10}{9}\)
Đặt: t=\(\frac{2x^2}{x^2-1}\)
Pt trở thành: \(t^2-t-\frac{10}{9}=0\)\(\Leftrightarrow9t^2-9t-10=0\)<=> \(\orbr{\begin{cases}t=-\frac{1}{3}\\t=\frac{5}{6}\end{cases}}\)
Nếu: \(\frac{2x^2}{x^2-1}=-\frac{1}{3}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{1}{7}}\\x=-\sqrt{\frac{1}{7}}\end{cases}\left(tm\right)}\)
Nếu: \(\frac{2x^2}{x^2-1}=\frac{5}{6}\)(vô nghiệm)
Vậy nghiệm là ...
http://vchat.vn/pictures/service/2017/02/iit1486637364.PNG