Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,|x+3|=3x-1\)
+) với:\(x\ge-3\Rightarrow x+3\ge0\Rightarrow|x+3|=x+3\)
\(\Rightarrow3x-1=x+3\Rightarrow3x=x+4\Rightarrow x=2\left(\text{ thỏa mãn}\right)\)
+) với: \(x< -3\Rightarrow x+3< 0\Rightarrow|x+3|=-3-x\)
\(\Rightarrow-3-x=3x-1\Rightarrow-x=3x+2\Rightarrow4x+2=0\Rightarrow x=-\frac{1}{2}\left(\text{loại}\right)\)
Vậy: x=2
a) câu a bạn cho 2 cái căn ở cuối làm j thế
hiệu bằng 0 rồi mà?
cái pt thứ 2 bạn nhân 2 vế vs x
Sau đó chuyển hết sang 1 vế,,,dùng máy băm nghiệm
a) PT \(\Leftrightarrow\left(x+1\right)^4+\sqrt{\left(x+1\right)^2+9}=3\).
Ta có \(\left(x+1\right)^4+\sqrt{\left(x+1\right)^2+9}\ge\sqrt{9}=3\).
Đẳng thức xảy ra khi và chỉ khi x = -1.
Vậy..
b) \(x^2=\sqrt{x^3-x^2}+\sqrt{x^2-x}\)
Đk: \(\left\{{}\begin{matrix}x^3-x^2\ge0\\x^2-x\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(x-1\right)\ge0\\x\left(x-1\right)\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge1\\x=0\end{matrix}\right.\\\left[{}\begin{matrix}x\ge1\\x\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x\ge1\end{matrix}\right.\)
Thay x=0 vào pt thấy thỏa mãn => x=0 là một nghiệm của pt
Xét \(x\ge1\)
Pt \(\Leftrightarrow x^4=\left(\sqrt{x^3-x^2}+\sqrt{x^2-x}\right)^2\le2\left(x^3-x\right)\) (Theo bđt bunhiacopxki)
\(\Leftrightarrow x^4\le2x\left(x^2-1\right)\le\left(x^2+1\right)\left(x^2-1\right)=x^4-1\)
\(\Leftrightarrow0\le-1\) (vô lí)
Vậy x=0
c) \(\sqrt{x-1}+\sqrt{3-x}+x^2+2x-3-\sqrt{2}=0\) (đk: \(1\le x\le3\))
Xét x-1=0 <=> x=1 thay vào pt thấy thỏa mãn => x=1 là một nghiệm của pt
Xét \(x\ne1\)
Pt\(\Leftrightarrow\dfrac{x-1}{\sqrt{x-1}}+\dfrac{1-x}{\sqrt{3-x}+\sqrt{2}}+\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3\right)=0\) (1)
Xét \(\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3\)
Có \(\sqrt{3-x}+\sqrt{2}\ge\sqrt{2}\)
\(\Leftrightarrow\dfrac{-1}{\sqrt{3-x}+\sqrt{2}}\ge-\dfrac{1}{\sqrt{2}}\)
Có \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-1}}>0\\x+3\ge4\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{\sqrt{x-1}}-\dfrac{1}{\sqrt{3-x}+\sqrt{2}}+x+3>0-\dfrac{1}{\sqrt{2}}+4>0\)
Từ (1) => x-1=0 <=> x=1
Vậy pt có nghiệm duy nhất x=1
Câu 1:
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\)(1)
Trường hợp 1: x<1
(1) trở thành 1-x+2-x=3
=>3-2x=3
=>x=0(nhận)
Trường hợp 2: 1<=x<2
(1) trở thành x-1+2-x=3
=>1=3(loại)
Trường hợp 3: x>=2
(1) trở thành x-1+x-2=3
=>2x-3=3
=>2x=6
hay x=3(nhận)