Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4+2x^3+5x^2+10x-6x-12=0\)
\(\Leftrightarrow x^3\left(x+2\right)+5x\left(x+2\right)-6\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3+5x-6\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-x^2+x^2-x+6x-6\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-1\right)+x\left(x-1\right)+6\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x^2+x+6\right)=0\)
\(\Leftrightarrow\)\(x+2=0\)
hoặc \(x-1=0\)
hoặc \(x^2+x+6=0\)
\(\Leftrightarrow\) \(x=-2\)(tm)
hoặc \(x=1\)(tm)
hoặc \(\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\)(ktm)
Vậy tập nghiệm của phương trình là \(S=\left\{-2;1\right\}\)
1: \(\dfrac{x-3}{x+1}=\dfrac{x^2}{x^2-1}\)
=>(x-3)(x-1)=x^2
=>x^2=x^2-4x+3
=>-4x+3=0
=>x=3/4
2: \(\dfrac{5}{3x+2}=2x-1\)
=>(2x-1)(3x+2)=5
=>6x^2+4x-3x-2-5=0
=>6x^2+x-7=0
=>6x^2+7x-6x-7=0
=>(6x+7)(x-1)=0
=>x=1hoặc x=-7/6
\(\frac{x-3}{x-2}+\frac{x+2}{x}=2\left(ĐKXĐ:x\ne0;x\ne2\right).\)
\(\Leftrightarrow\frac{x.\left(x-3\right)}{x.\left(x-2\right)}+\frac{\left(x-2\right).\left(x+2\right)}{x.\left(x-2\right)}=\frac{2x.\left(x-2\right)}{x.\left(x-2\right)}\)
\(\Rightarrow x.\left(x-3\right)+\left(x-2\right).\left(x+2\right)=2x.\left(x-2\right)\)
\(\Leftrightarrow x^2-3x+x^2-2^2=2x^2-4x\)
\(\Leftrightarrow x^2-3x+x^2-4=2x^2-4x\)
\(\Leftrightarrow x^2-3x+x^2-4-2x^2+4x=0\)
\(\Leftrightarrow x-4=0\)
\(\Leftrightarrow x=0+4\)
\(\Leftrightarrow x=4\left(TMĐK\right).\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{4\right\}.\)
Chúc bạn học tốt!
Phần GTNN:
Câu 1:
Ta thấy: \(M=x^2-8x+5=x^2-8x+16-11=\left(x-4\right)^2-11\)
Do \(\left(x-4\right)^2\ge0\) ( mọi x )
\(\Rightarrow\left(x-4\right)^2-11\ge-11\) ( mọi x )
=> GTNN của đa thức \(M=\left(x-4\right)^2-11\) bằng -11 khi và chỉ khi:
\(\left(x-4\right)^2=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
Vậy GTNN của đa thức \(M=x^2-8x+5\) bằng -11 khi và chỉ khi x = 4.
Câu 2:
Ta thấy: \(F=2x^2+6x-4=2\left(x^2+3x-2\right)=2\left(x^2+3x+\frac{9}{4}-\frac{17}{4}\right)=2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\)
Do \(\left(x+\frac{3}{2}\right)^2\ge0\) ( mọi x )
\(\Rightarrow\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\ge\frac{-17}{4}\) ( mọi x )
\(\Rightarrow2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\ge\frac{-17}{2}\) ( mọi x )
=> GTNN của đa thức \(F=2\left[\left(x+\frac{3}{2}\right)^2-\frac{17}{4}\right]\) bằng \(\frac{-17}{2}\) khi và chỉ khi:
\(\left(x+\frac{3}{2}\right)^2-\frac{17}{4}=\frac{-17}{4}\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2=0\)
\(\Rightarrow x+\frac{3}{2}=0\)
\(\Rightarrow x=\frac{-3}{2}\)
Vậy GTNN của đa thức \(F=2x^2+6x-4\) bằng \(\frac{-17}{4}\) khi và chỉ khi \(x=\frac{-3}{2}\).
a: 3x-2=2x-3
=>x=-1
b: 2x+3=5x+9
=>-3x=6
=>x=-2
c: 5-2x=7
=>2x=-2
=>x=-2
d: 10x+3-5x=4x+12
=>5x+3=4x+12
=>x=9
e: 11x+42-2x=100-9x-22
=>9x+42=78-9x
=>18x=36
=>x=2
f: 2x-(3-5x)=4(x+3)
=>2x-3+5x=4x+12
=>7x-3=4x+12
=>3x=15
=>x=5