K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2016

Lấy logarit cơ số 10 hai vế ta có :

\(lg2^{x+2}+lg3^3=lg4^x+lg5^{x-1}\)

\(\Leftrightarrow\left(x+2\right)lg2+xlg3=xlg4+\left(x-1\right)lg5\)

\(\Leftrightarrow x\left(lg4+lg5-lg3-lg2\right)=2lg2+lg5\)

\(\Leftrightarrow x.lg\frac{4.5}{3.2}=lg\left(2^2.5\right)\)

\(\Leftrightarrow x=\frac{lg20}{lg\frac{10}{3}}\)

Vậy nghiệm của phương trình là \(x=\frac{lg20}{lg\frac{10}{3}}\)

18 tháng 5 2021

\(3x^4+x^2-4=0\)

\(\Leftrightarrow3x^4-3x^2+4x^2-4=0\)

\(\Leftrightarrow3x^2\cdot\left(x^2-1\right)+4\cdot\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(3x^2+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\3x^2+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm1\\x^2=-\dfrac{4}{3}\left(l\right)\end{matrix}\right.\)

\(S=\left\{\pm1\right\}\)

18 tháng 5 2021

Đặt `x^2=t(t>=0)`

Ta có PT: `3t^2+t-4=0`

`3+1-4=0`

`=> t_1 = 1 ; t_2 = -4/3 (L)`

`=> x^2=1`

`<=> x=\pm 1`

Vậy `S={\pm 1}`.

29 tháng 3 2016

Biến đổi phương trình về dạng :

\(\frac{\left(\frac{5}{4}\right)^x+1}{\left(\frac{1}{4}\right)^x+\left(\frac{2}{4}\right)^x+\left(\frac{3}{4}\right)^x}=\frac{3}{2}\)

Nhận thấy \(x=1\) là nghiệm 

Nếu \(x>1\) thì \(\left(\frac{5}{4}\right)^x+1>\frac{5}{4}+1=\frac{9}{4}\) và \(\left(\frac{1}{4}\right)^x+\left(\frac{2}{4}\right)^x+\left(\frac{3}{4}\right)^x<\frac{1}{4}+\frac{2}{4}+\frac{3}{4}=\frac{6}{4}\)

Suy ra vế trái >\(\frac{3}{2}\)= vế phải, phương trình vô nghiệm. Tương tự khi x<1.

Đáp số : x=1

 

NV
29 tháng 7 2021

\(\Leftrightarrow3^{x^2}.4^{x+1}=3^{-x}\)

Lấy logarit cơ số 3 hai vế:

\(\Rightarrow log_3\left(3^{x^2}.4^{x+1}\right)=log_3\left(3^{-x}\right)\)

\(\Leftrightarrow x^2+\left(x+1\right)log_34=-x\)

\(\Leftrightarrow x^2+x+\left(x+1\right)log_34=0\)

\(\Leftrightarrow x\left(x+1\right)+\left(x+1\right)log_34=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+log_34\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-log_34=-2log_32\end{matrix}\right.\)

29 tháng 3 2016

a) Chia 2 vế của phương trình cho \(5^x>0\), ta có :

\(\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x=1\)

Xét \(f\left(x\right)=\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x\)

Ta có :

\(f'\left(x\right)=\left(\frac{3}{5}\right)^x\ln\frac{3}{5}+\left(\frac{4}{5}\right)^x\ln\frac{4}{5}<0\) với mọi x

Do đó \(f\left(x\right)\) đồng biến trên R

Mặt khác

f(2) =1. Do đó x=2 là nghiệm duy nhất của phương trình

b) Phương trình tương đương với

\(2^x\left(2-2^x\right)=x-1\)

Với x=1 thì phương trình trên đúng, do đó x=1 là nghiệm của phương trình

- Nếu x>1 thì \(2<2^x\) và \(x-1>0\) do đó \(2^x\left(2-2^x\right)<0\)\(x-1\)

phương trình vô nghiệm

- Nếu x<1 thì \(2>2^x\) và \(x-1<0\) do đó \(2^x\left(2-2^x\right)>0\)\(x-1\)

phương trình đã cho có 1 nghiệm duy nhất là x=1

NV
18 tháng 1 2022

ĐKXĐ: \(x\ge log_32\)

\(2\sqrt[]{3^x-2}+\sqrt[4]{\left(3^x-2\right)\left(3^x+2\right)}=\sqrt[]{3^x+2}\)

\(\Leftrightarrow2\sqrt[]{\dfrac{3^x-2}{3^x+2}}+\sqrt[4]{\dfrac{3^x-2}{3^x+2}}=1\)

Đặt \(\sqrt[4]{\dfrac{3^x-2}{3^x+2}}=t\ge0\)

\(\Rightarrow2t^2+t=1\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\sqrt[4]{\dfrac{3^x-2}{3^x+2}}=\dfrac{1}{2}\Rightarrow\dfrac{3^x-2}{3^x+2}=\dfrac{1}{16}\)

\(\Rightarrow3^x=\dfrac{34}{15}\)

\(\Rightarrow x=log_3\left(\dfrac{34}{15}\right)\)

NV
30 tháng 3 2021

Toàn bộ nghiệm của 3 pt này đều là nghiệm thực, không có nghiệm phức nào

a. \(x^2-3x-2=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{17}}{2}\\x=\dfrac{3-\sqrt{17}}{2}\end{matrix}\right.\)

b. \(x^4-5x^2+6=0\Rightarrow\left[{}\begin{matrix}x^2=2\\x^2=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\pm\sqrt{2}\\x=\pm\sqrt{3}\end{matrix}\right.\)

c. \(-x^2+4x+5=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)