K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

\(\left\{{}\begin{matrix}\left(x^2-x\right)\left(2y-y^2\right)=20\\x^2-x+y^2-2y=19\end{matrix}\right.\).
Đặt \(a=x^2-x,b=y^2-2y\), ta có hệ:
\(\left\{{}\begin{matrix}-ab=20\\a+b=19\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}ab=-20\\b=19-a\end{matrix}\right.\)\(\Rightarrow a\left(19-a\right)=-20\)\(\Leftrightarrow-a^2+19a+20=0\)\(\Leftrightarrow\left[{}\begin{matrix}a=20\\a=-1\end{matrix}\right.\).
Với a = 20 suy ra b = 19 - 20 = -1.
Ta có \(\left\{{}\begin{matrix}x^2-x=20\\y^2-2y=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x-20=0\\y^2-2y+1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+4\right)\left(x-5\right)=0\\\left(y-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-4\\x=5\end{matrix}\right.\\y=1\end{matrix}\right.\).
Ta có hai cặp nghiệm \(\left(x,y\right)=\left(-4,1\right);\left(x,y\right)=\left(5,1\right)\).
Với a = -1 suy ra \(x^2-x=-1\Leftrightarrow x^2-x+1=0\) (vô nghiệm).
Vậy hệ phương trình có hai cặp nghiệm \(\left(x,y\right)=\left(-4,1\right);\left(x,y\right)=\left(5,1\right)\).

18 tháng 1 2020

b)Đặt $S=x+y,P=xy$ thì được:

\(\left\{ \begin{align} & S+P=2+3\sqrt{2} \\ & {{S}^{2}}-2P=6 \\ \end{align} \right.\Rightarrow {{S}^{2}}+2S+1=11+6\sqrt{2}={{\left( 3+\sqrt{2} \right)}^{2}}\)

\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l} S = 2 + \sqrt 2 \\ P = 2\sqrt 2 \end{array} \right. \Rightarrow \left( {x;y} \right) \in \left\{ {\left( {2;\sqrt 2 } \right),\left( {\sqrt 2 ;2} \right)} \right\}\\ \left\{ \begin{array}{l} S = - 4 - \sqrt 2 \\ P = 6 + 4\sqrt 2 \end{array} \right.\left( {VN} \right) \end{array} \)

18 tháng 1 2020

\( c)\left\{ \begin{array}{l} 2{x^2} + xy + 3{y^2} - 2y - 4 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} 2\left( {2{x^2} + xy + 3{y^2} - 2y - 4} \right) - \left( {3{x^2} + 5{y^2} + 4x - 12} \right) = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {x^2} + 2xy + {y^2} - 4x - 4y + 4 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l} {\left( {x + y - 2} \right)^2} = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x + y - 2 = 0\\ 3{x^2} + 5{y^2} + 4x - 12 = 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = 1\\ y = 1 \end{array} \right. \)

27 tháng 9 2017

\(\left(x+1\right)\left(y+1\right)=8\\ \Rightarrow xy+x+y+1=8\\ \Rightarrow xy+x+y=7\)

\(x\left(x+1\right)+y\left(y+1\right)+xy=17\\ \Rightarrow x^2+y^2+x+y+xy=17\\ \Rightarrow x^2+y^2=10\)

27 tháng 9 2017

a)\(\hept{\begin{cases}2x-3y=1\\4x-5y=2\end{cases}\Leftrightarrow\hept{\begin{cases}4x-6y=2\\4x-5y=2\end{cases}}}\)

Trừ 2 vế lại ta được 

\(4x-4x-6y+5y=0\Leftrightarrow-y=0\Leftrightarrow y=0\)

\(\Rightarrow x=\frac{1}{2}\)

17 tháng 12 2018

Tại sao lại x2 + 2xy + y2 = 4??? Theo đề bài thì (x + y)2 = 2 mà?

17 tháng 12 2018

\(x^2+2xy+y^2=4\)

\(\Leftrightarrow x^2+y^2=4-2xy=4-2=2\)

\(\Leftrightarrow x^2+y^2=2xy\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\)

Thay vào pt suy ra \(x=y=1\)

18 tháng 5 2018

⇌ 2x(x+1)(y+1)+xy= -2y(y+1)(x+1)-xy

⇌ 2x(x+1)(y+1)+ 2y(y+1)(x+1)+xy+xy=0

⇌ (x+1)(y+1)(2x+2y)+2xy=0

⇌ 2(x+1)(y+1)(x+y)+2xy=0

⇌ 2((x+1)(y+1)(x+y)+xy)=0

⇌ x2y+x2+xy+x+xy2+xy+y2+y+xy=0

mk đc đến đó thui

thông cảm nha

18 tháng 5 2018

mk dùng cách đặt ẩn phụ: x+y=a; xy=b => (a+b)(a+1)=0 mà chưa ra đc gì nữa. nản

3 tháng 10 2017

Dễ mà you

Giải:

\(\hept{\begin{cases}x^2-x-y^2=19\\xy"x-1""2-y"=20\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2-x=19+y^2\\"x^2-x""2y-y^2=20\end{cases}\Rightarrow}"19+y^2""2y-y^2"=20\)

P/s: Công viậc cuối dành cho you là: Bn thay dấu ngoặc kép thành ngoặc đơn nhé