Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
Xét từng TH với x-y=1 và x-y=-1
\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)
Xét từng TH x=1 và y=-2
Đặt x +\(\frac{1}{x}\) =a, y+\(\frac{1}{y}\)=b
hpt<=>\(\hept{\begin{cases}a^2-2+b^2-2=1\\a+b=3\end{cases}}\) | |
---|---|
đến đây thì dễ rồi , có tổng với tích | |
bạn tìm ra a,b rồi tương tự tìm x,y |
\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)
\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)
\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)
\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)
\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)
\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)
\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)
\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)
Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)
NX: x = y = 0 là 1 nghiệm của hpt
Với x ; y khác 0 thì chia cả 2 vế của hệ đã cho cho xy ta được
\(\hept{\begin{cases}y-\frac{2y}{x}+\frac{3x}{y}=0\\\frac{y}{x}+x+\frac{2}{y}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y-\frac{2y}{x}=-\frac{3x}{y}\\x+\frac{2}{y}=-\frac{y}{x}\end{cases}}\)
Nhân 2 vế của hệ trên lại ta đc
\(\left(y-\frac{2y}{x}\right)\left(x+\frac{2}{y}\right)=3\)
\(\Leftrightarrow xy-\frac{4}{xy}=3\)
\(\Leftrightarrow\orbr{\begin{cases}xy=4\\xy=-1\end{cases}}\)
Dễ rồi nha