Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2-2=0\Rightarrow x^2+y^2=2\) thay vào pt(1) dc:
\(5x^2y-4xy^2+3y^3-\left(x^2+y^2\right)\left(x+y\right)=0\)
\(\Leftrightarrow2y^3+4x^2y-5xy^2-x^3=0\)
\(\Leftrightarrow\left(y^3-x^3\right)+\left(y^3+4x^2y-5xy^2\right)=0\)
\(\Leftrightarrow\left(y-x\right)^2\left(2y-x\right)=0\)Ok....?
*)Cách khác
\(pt\left(1\right)-3y\left(x^2+y^2-2\right)=2\left(xy-1\right)\left(x-2y\right)=0\)
Những bài còn lại chỉ cần phân tích ra rồi rút gọn là được nha. Bạn tự làm nha!
Đặt \(\hept{\begin{cases}x+y=a\\x-y=b\end{cases}}\)\(\Rightarrow\)ta có hệ \(\hept{\begin{cases}2a+3b=4\\a+2b=5\end{cases}}\Rightarrow\hept{\begin{cases}a=-7\\b=6\end{cases}}\)Từ đó ta có \(\hept{\begin{cases}x+y=-7\\x-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{13}{2}\end{cases}}\)PS: Cái đề chỗ 3(x+y) phải thành 3(x-y) chứ
Câu 1: ĐK: x khác -1/2, y khác -2
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:
\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)
=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)
Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>
\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)
Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)
\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)
\(\Leftrightarrow a^2+1=2a\)
\(\Leftrightarrow\left(a-1\right)^2=0\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)
\(a,\hept{\begin{cases}5\left(x+2y\right)-3\left(x-y\right)=99\\x-3y=7x-4y-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5x+10y-3x+3y=99\\x-3y-7x+4y=-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+13y=99\\-6x+y=-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x+39y=198\\-6x+y=-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x+39y-6x+y=198-17\\-6x+y=-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}40y=181\\-6x+y=-17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{181}{40}\\x=\frac{287}{80}\end{cases}}\)
Vậy hpt có nghiệm \(\left(x;y\right)=\left(\frac{287}{80};\frac{181}{40}\right)\)
Ý b, cũng làm tương tự bạn nhé ! Phá ngoặc ra rồi chuyển vế thành hpt bậc nhất 2 ẩn
\(b,\hept{\begin{cases}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2\left(xy+1\right)\\\left(y-x\right)\left(y+1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-x+xy-y=x^2+x-xy-y+2xy+2\\y^2+y-xy-x=y^2-2y+xy-2x-2xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=-2\\-3y-x=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{3}\end{cases}}\)
PT thứ hai của hệ tương đương với:
\(xy\left(x^2+y^2\right)+2=x^2+y^2+2xy\)
\(\Leftrightarrow\left(xy-1\right)\left(x^2+y^2-2\right)=0\)
+) TH1: xy = 1 thay vào PT thứ nhất của hệ đã cho được:
\(5x-4y+3y^3-2\left(x+y\right)=0\)
\(\Leftrightarrow y^3-2y+x=0\)
\(\Leftrightarrow y^4-2y^2+1=0\)
\(\Leftrightarrow y=\pm1\Rightarrow x=\pm1\)
TH2: x2 + y2 = 2, thay vào PT thứ nhất của hệ đã cho được:
\(5x^2y-4xy^2+3y^2-\left(x^2-y^2\right)\left(x+y\right)=0\)
\(\Leftrightarrow2y^2+4x^2y-5xy^2-x^3=0\)
\(\Leftrightarrow\left(y^3-x^3\right)+\left(y^3+4x^2y-5xy^2\right)=0\)
\(\Leftrightarrow\left(y-x\right)^2\left(2xy-x\right)=0\)
Với: x = y tìm đc 2 nghiệm: (x, y) = (1; 1); ( \(\pm\)1)
Với: x = 2y thay vào x2 + y2 = 2, ta có: \(y=\pm\sqrt{\frac{2}{5}}\Rightarrow x=\pm2\sqrt{\frac{2}{5}}\)
Vậy HPT đã cho có 4 nghiệm: \(\left(x,y\right)=\left(1;1\right);\left(\pm1\right);\left(2\sqrt{\frac{2}{5}};\sqrt{\frac{2}{5}}\right);\left(-2\sqrt{\frac{2}{5}};-\sqrt{\frac{2}{5}}\right)\)