Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(x^2+2\sqrt{x}=x^2+\sqrt{x}+\sqrt{x}\ge3\sqrt[3]{x^2\cdot\sqrt{x}\cdot\sqrt{x}}=3x\)
Tương tự ta có: \(\hept{\begin{cases}y^2+2\sqrt{y}\ge3y\\z^2+2\sqrt{z}\ge3z\end{cases}}\)
Cộng theo vế các BĐT trên ta được:\(\left(x^2+y^2+z^2\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
\(\ge3\left(x+y+z\right)=\left(x+y+z\right)^2\). Suy ra
\(\left(x^2+y^2+z^2\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\ge x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\ge xy+yz+xz\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+z=3\\x=y=z\end{cases}}\Rightarrow x=y=z=1\)
Vậy hệ pt có nghiệm là (x;y;z)=(1;1;1)
\(\hept{\begin{cases}x-y=3\\\left(x-y\right).\left(x^2+xy+y^2\right)=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=3\\x^2+xy+y^2=3\end{cases}\Leftrightarrow\hept{\begin{cases}y=x-3\\x^2+x.\left(x-3\right)+\left(x-3\right)^2=3\left(I\right)\end{cases}}}\)
Phương trình (I) tương đương: \(x^2+x^2-3x+x^2-6x+9=3\Leftrightarrow3x^2-9x+6=0\Rightarrow x^2-3x+2=0\)
\(\Leftrightarrow\left(x-1\right).\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-2\\y=-1\end{cases}}}\)
Vậy \(\left(x,y\right)=\left(1,-2\right),\left(2,-1\right)\)
5 .\(\frac{x}{\sqrt{2\left(y^2+z^2\right)-x^2}}=\frac{\sqrt{3}x^2}{\sqrt{3}x\sqrt{2\left(y^2+z^2\right)-x^2}}\ge\frac{\sqrt{3}x^2}{x^2+y^2+z^2}\)
TT=>VT2>=VP2
6.\(1+\sqrt{y-1}\ge1\)
\(\frac{1}{y^2}-\left(x+z\right)^2\le1\)
=>VT1>=VP1
10b pt1\(\Leftrightarrow\left(y-3x\right)\left(y^2-y+1\right)=0\)
Ta có PT (1) <=> ( x + \(2\sqrt{x}\)+ 1) - (y + z + \(2\sqrt{yz}\)) - \(2\left(\sqrt{y}+\sqrt{z}\right)\)- 1 = 0
<=> (\(1+\sqrt{x}\))2 - (\(1+\sqrt{y}+\sqrt{z}\))2 = 0
<=> \(\orbr{\begin{cases}2+\sqrt{x}+\sqrt{y}+\sqrt{z}=0\\\sqrt{x}-\sqrt{y}-\sqrt{z}=0\end{cases}}\)
Thế vào pt (2) được
y + z \(-\sqrt{3z}-\sqrt{yz}\)+ 1 = 0
<=> (\(\frac{\sqrt{z}}{2}-\sqrt{y}\))2 + (\(\frac{\sqrt{3z}}{2}-1\))2 = 0
<=> \(\hept{\begin{cases}z=\frac{4}{3}\\y=\frac{1}{3}\\x\:=3\end{cases}}\)
a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)
b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)
c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)
\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)
e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn
Ta có:
\(4\sqrt{8-x}+4\sqrt{8-y}+4\sqrt{8-z}\)
\(\le8-x+4+8-y+4+8-z+4\)
\(=36-x-y-z\)
\(=48-\left(x+4\right)-\left(y+4\right)-\left(z+4\right)\)
\(\le48-4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
\(=48-4.6=24\)
\(\Rightarrow\sqrt{8-x}+\sqrt{8-y}+\sqrt{8-z}\le6\)
Dấu = xảy ra khi \(x=y=z=4\)
bạn tham khảo nhé:
Vì \(x,y,z\ge0\)không mất tính tổng quát ta giả sử \(x\ge y\ge z\)
hệ \(\Leftrightarrow\hept{\begin{cases}3\sqrt{x}=6\\3\sqrt{8-x}=6\end{cases}\Leftrightarrow3\sqrt{x}=3\sqrt{8-x}\Leftrightarrow x=4}\)
\(\Rightarrow4\ge y\ge z\)
Nếu \(x=1\)thì \(\sqrt{8-x}=\sqrt{7}\left(L\right)\)
nếu \(x=2\)thì \(\sqrt{x}=\sqrt{2}\left(L\right)\)
\(\)nếu \(x=3\)thì \(\sqrt{x}=\sqrt{3}\left(L\right)\)
Loại vì các số vô tỉ không thẻ nào cộng lại là 1 số nguyên
Vậy \(\left(x;y;z\right)\)là \(\left(4;4;4\right)\)