Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(y\ge z\Rightarrow\frac{4x}{1+4x}\ge\frac{4y}{1+4y}\Leftrightarrow1-\frac{1}{1+4x}\ge1-\frac{1}{1+4y}\)
\(\Leftrightarrow\frac{1}{1+4x}\le\frac{1}{1+4y}\Leftrightarrow1+4x\ge1+4y\Leftrightarrow x\ge y\)
\(\Rightarrow\frac{4z}{1+4z}\ge\frac{4x}{1+4x}\).Tương tự:\(z\ge x\).Nên \(x=y=z\).
Thế vào mà giải nhé
a/ Đảo ngược lại rồi đặc \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)
b/ Dễ thấy vai trò x, y, z như nhau nên ta chỉ cần xét 1 trường hợp tiêu biểu thôi.
Xét \(x>y>z\)
\(\Rightarrow\frac{1}{x}< \frac{1}{y}< \frac{1}{z}\)
\(\Rightarrow x+\frac{1}{y}>z+\frac{1}{x}\)(trái giả thuyết)
\(\Rightarrow x=y=z\)'
\(\Rightarrow x+\frac{1}{x}=2\)
\(\Leftrightarrow x=1\)