K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2014

Hướng Cm nhé!

a) Dùng định lí Pitago:

Cm: AB^2 + AC^2 = BC^2

b) Xét tứ giác AMKN có :

góc A=90*

__ M= 90( KM vuông vs AB)

__ N= 90* ( KN vuông vs AC)

-> điều phải chứng minh

Tính MN:

Tính đường cao AH

Sử dụng tính chất hình chữ nhật đối vs Hình AMKN ( 2 đường chéo bằng nhau)

ta có : AH= MN

c) Xét 2 tam giác: AMN vầCB

-> đưa ra tỉ số AM/ AC = AN/ AB 

-> AM.AB=AN.AC

d) Căn Căn kia thì tớ chịu, lười chả buồn nghĩ =)))

24 tháng 10 2014

Hướng Cm nhé!

a) Dùng định lí Pitago:

Cm: AB^2 + AC^2 = BC^2

b) Xét tứ giác AMKN có :

góc A=90*

__ M= 90( KM vuông vs AB)

__ N= 90* ( KN vuông vs AC)

-> điều phải chứng minh

Tính MN:

Tính đường cao AH

Sử dụng tính chất hình chữ nhật đối vs Hình AMKN ( 2 đường chéo bằng nhau)

ta có : AH= MN

c) Xét 2 tam giác: AMN vầCB

-> đưa ra tỉ số AM/ AC = AN/ AB 

-> AM.AB=AN.AC

d) Căn Căn kia thì tớ chịu, lười chả buồn nghĩ =)))

25 tháng 10 2021

b: Xét ΔBAC vuông tại B có BH là đường cao

nên \(HA\cdot HC=BH^2\left(1\right)\)

Xét ΔBHC vuông tại H có HE là đường cao

nên \(BE\cdot BC=BH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)

26 tháng 10 2021

Giải dùm em câu d nữa ạ

 

16 tháng 10 2021

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=6(cm)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{1}{2}\)

\(\Leftrightarrow\widehat{C}=30^0\)

hay \(\widehat{B}=60^0\)

Ta có: \(\dfrac{AB}{AC}=\sqrt{3}\)

\(\Leftrightarrow HB=3\cdot HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow3\cdot HC=12\)

hay HC=4(cm)

\(\Leftrightarrow HB=\dfrac{4}{3}\left(cm\right)\)

\(\Leftrightarrow BC=\dfrac{16}{3}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\dfrac{8}{3}\left(cm\right)\\AC=\dfrac{8\sqrt{3}}{3}\left(cm\right)\end{matrix}\right.\)

24 tháng 10 2021

b: \(DA\cdot DB+EA\cdot EC\)

\(=HD^2+HE^2\)

\(=AH^2=HB\cdot HC\)