Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đầu bài ta có:
\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}\)
\(\Rightarrow\frac{2\cdot\left(x+1\right)}{2\cdot2}=\frac{3\cdot\left(y+3\right)}{3\cdot4}=\frac{4\cdot\left(z+5\right)}{4\cdot6}\)
\(\Rightarrow\frac{2x+2}{4}=\frac{3y+9}{12}=\frac{4z+20}{24}\)
\(=\frac{\left(2x+2\right)+\left(3y+9\right)+\left(4z+20\right)}{4+12+24}\)
\(=\frac{\left(2x+3y+4z\right)+\left(2+9+20\right)}{4+12+24}\)
\(=\frac{9+31}{40}=1\)
\(\Rightarrow\hept{\begin{cases}x=1\cdot2-1=1\\y=1\cdot4-3=1\\z=1\cdot6-5=1\end{cases}}\)
a) Vì \(\left|2x+4\right|\ge0;\left|y\right|\ge0\)
mà \(\left|2x+4\right|+\left|y\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|2x+4\right|=0\\\left|y\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-2;0\right)\)
ý bạn là \(x-y-z=-33?\)
Ta có \(2x=3y=5z\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x-y-z}{15-10-6}=\dfrac{-33}{-1}=33\\ \Rightarrow\left\{{}\begin{matrix}x=33\cdot15=495\\y=33\cdot10=330\\z=33\cdot6=198\end{matrix}\right.\)
Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)
=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn
Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)
=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)
Vậy ..
\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)
Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)
ta có:
\(2x=3y=4z\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\) (vì 2x=3y=4z nên khi cùng chia cho 1 số thì kq vẫn bằng nhau rồi rút gọn phân số thôi)
Áp dụng tình chật dãy tỉ số bằng nhau ta co:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\Rightarrow\frac{4x-3y+2z}{24-12+6}=\frac{18}{18}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{6}=1\Rightarrow x=6\\\frac{y}{4}=1\Rightarrow y=4\\\frac{z}{3}=1\Rightarrow z=3\end{cases}}\)
vậy x=6; y=4; z=3