K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2018

2.

a) \(\sqrt{4\left(1-x\right)^2}-12=0\)

\(\Leftrightarrow\sqrt{4}.\sqrt{\left(1-x\right)^2}-12=0\)

\(\Leftrightarrow2.\left|1-x\right|-12=0\) (1)

TH1: \(1-x\ge0\Leftrightarrow x\le1\)

(1) \(\Leftrightarrow2\left(1-x\right)-12=0\)

\(\Leftrightarrow2-2x-12=0\)

\(\Leftrightarrow-10-2x=0\)

\(\Leftrightarrow-2x=10\)

\(\Leftrightarrow x=-5\left(TMĐK\right)\)

TH2: \(1-x< 0\Leftrightarrow x>0\)

(1) \(\Leftrightarrow2\left(x-1\right)-12=0\)

\(\Leftrightarrow2x-2-12=0\)

\(\Leftrightarrow2x-14=0\)

\(\Leftrightarrow2x=14\)

\(\Leftrightarrow x=7\left(TMĐK\right)\)

Vậy phương trình có tập nghiệm: \(S=\left\{7;-5\right\}\)

7 tháng 9 2018

2.

b) \(\sqrt{4x^2-12x+9}=5\)

\(\Leftrightarrow\sqrt{\left(2x-3\right)^2}=5\)

\(\Leftrightarrow\left|2x-3\right|=5\)

TH1: \(2x-3\ge0\Leftrightarrow x\ge\dfrac{3}{2}\)

\(\Leftrightarrow2x-3=5\Leftrightarrow x=4\left(TMĐK\right)\)

TH2: \(2x-3< 0\Leftrightarrow x< \dfrac{3}{2}\)

\(\Leftrightarrow3-2x=5\Leftrightarrow x=-1\left(TMĐK\right)\)

Vậy phương trình có tập nghiệm là: \(S=\left\{-1;4\right\}\)

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

17 tháng 9 2021

d. \(\sqrt{9x^2+12x+4}=4\)

<=> \(\sqrt{\left(3x+2\right)^2}=4\)

<=> \(|3x+2|=4\)

<=> \(\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

c: Ta có: \(\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2.5}=\dfrac{2}{7}\)

\(\Leftrightarrow35\sqrt{x}-14=16\sqrt{x}+5\)

\(\Leftrightarrow x=1\)

3 tháng 9 2018

a) \(\sqrt{4\left(1-x\right)^2}-12=0\)

\(\sqrt{4\left(1-x\right)^2}=0+12\)

\(\sqrt{4\left(1-x\right)^2}=12\)

\(\left[\sqrt{4\left(1-x\right)^2}\right]^2=12^2\)

\(4-8x+4x^2=144\)

\(\Rightarrow\orbr{\begin{cases}x=7\\x=-5\end{cases}}\)

b) \(\sqrt{4x^2-12x+9}=5\)

\(\left(\sqrt{4x^2-12x+9}\right)^2=5^2\)

\(4x^2-12x+9=25\)

\(\Rightarrow\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)

15 tháng 8 2020

BÀI 1:

a)

\(A=4\sqrt{3}-2\sqrt{3}+1-\sqrt{3}\)

=>    \(A=\sqrt{3}+1\)

b)

\(B=\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\frac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}\)

=>    \(B=\sqrt{5}-\frac{\sqrt{5}}{2}\)

=>    \(B=\frac{\sqrt{5}}{2}\)

a: \(=\sqrt{5}+2+\sqrt{3}+1-\sqrt{5}-\sqrt{3}=3\)

b: \(=\left(-\sqrt{5}-2+\sqrt{5}-\sqrt{3}\right)\cdot\left(2\sqrt{3}+3\right)\)

\(=-\sqrt{3}\left(2+\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)

\(=-\sqrt{3}\left(7+4\sqrt{3}\right)=-7\sqrt{3}-12\)

c: \(=\dfrac{\sqrt{2}+\sqrt{3}+2}{\left(\sqrt{2}+\sqrt{3}+2\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}=\dfrac{1}{1+\sqrt{2}}=\sqrt{2}-1\)