Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
16.
Số cạnh của 1 lăng trụ luôn chia hết cho 3 nên A
17.
Chóp có đáy là đa giác n cạnh sẽ có n mặt bên (mỗi cạnh đáy và đỉnh sẽ tạo ra 1 mặt bên tương ứng)
Do đó chóp có n+1 mặt (n mặt bên và 1 mặt đáy)
Chóp có n+1 đỉnh (đáy n cạnh nên có n đỉnh, cộng 1 đỉnh của chóp là n+1)
Do đó số mặt bằng số đỉnh
18. D
19. A
20. C
Gọi V là thể tích khi quay phần giới hạn bởi \(y=\dfrac{1}{x}\) ; x=1, y=0; Ox quanh Ox
\(\Rightarrow V=V_1+V_2\)
\(V=\pi\int\limits^5_1\dfrac{1}{x^2}dx=\dfrac{4\pi}{5}\)
\(V_1=\pi\int\limits^k_1\dfrac{1}{x^2}dx=-\dfrac{\pi}{x}|^k_1=\pi-\dfrac{\pi}{k}\)
\(\Rightarrow V_2=V-V_1=\dfrac{4\pi}{5}-\pi+\dfrac{\pi}{k}=\dfrac{\pi}{k}-\dfrac{\pi}{5}\)
\(\Rightarrow\pi-\dfrac{\pi}{k}=2\left(\dfrac{\pi}{k}-\dfrac{\pi}{5}\right)\)
\(\Rightarrow k=\dfrac{15}{7}\)
Không ai vẽ hình khi làm bài mặt cầu Oxyz đâu bạn, chỉ cần đại số hóa nó là được.
Gọi I là tâm mặt cầu, do mặt cầu tiếp xúc (Q) tại H nên \(IH\perp\left(Q\right)\)
\(\Rightarrow\) Đường thẳng IH nhận vtpt của (Q) là 1 vtcp
\(\Rightarrow\) IH nhận (1;1;-1) là 1 vtcp
Phương trình IH: \(\left\{{}\begin{matrix}x=1+t\\y=-1+t\\z=-t\end{matrix}\right.\)
I vừa thuộc IH vừa thuộc (P) nên là giao điểm của IH và (P)
\(\Rightarrow\) Tọa độ I thỏa mãn:
\(2\left(1+t\right)+\left(-1+t\right)+\left(-t\right)-3=0\)
\(\Rightarrow t=1\Rightarrow I\left(2;0;-1\right)\)
\(\Rightarrow\overrightarrow{IH}=\left(-1;-1;1\right)\Rightarrow R=IH=\sqrt{3}\)
Phương trình (S):
\(\left(x-2\right)^2+y^2+\left(z+1\right)^2=3\)
Lời giải:
\(\log_2^2x+\log_2(\frac{x}{4})=0\)
$\Leftrightarrow \log_2^2x+\log_2x+\log_2(\frac{1}{4})=0$
$\Leftrightarrow \log_2^2x+\log_2x-2=0$
$\Leftrightarrow (\log_2x-1)(\log_2x+2)=0$
\Leftrightarrow \log_2x=1$ hoặc $\log_2x=-2$
$\Leftrightarrow x=2$ hoặc $x=\frac{1}{4}$
Tích các nghiệm: $2.\frac{1}{4}=\frac{1}{2}$
Đáp án D