Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
AC=căn 5^2-3^2=4cm
BH=AB^2/BC=1,8cm
CH=5-1,8=3,2cm
AH=3*4/5=2,4cm
2:
ΔCBA vuông tại B có tan 40=BC/BA
=>BC/10=tan40
=>BC=8,39(m)
ΔCBD vuông tại B có tan D=BC/BD
=>BD=8,39/tan35=11,98(m)
a. \(\sqrt{x^2-2x+4}=2x-2\)
<=> x2 - 2x + 4 = (2x - 2)2
<=> x2 - 2x + 4 = 4x2 - 8x + 4
<=> 4x2 - x2 - 8x + 2x + 4 - 4 = 0
<=> 3x2 - 6x = 0
<=> 3x(x - 2) = 0
<=> \(\left[{}\begin{matrix}3x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b. \(\sqrt{x^2-2x}=\sqrt{2-3x}\)
<=> x2 - 2x = 2 - 3x
<=> x2 + 3x - 2x - 2 = 0
<=> x2 + x - 2 = 0
<=> x2 + 2x - x - 2 = 0
<=> x(x + 2) - (x + 2) = 0
<=> (x - 1)(x + 2) = 0
<=> \(\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
c. (Tương tự câu a)
\(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=2\sqrt{6}\cdot3\sqrt{6}-4\sqrt{3}\cdot3\sqrt{6}+5\sqrt{2}\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+30\sqrt{3}\)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC, ta được:
\(BH^2=HA\cdot HC\)
\(\Leftrightarrow BH^2=2\cdot6=12\)
hay \(BH=2\sqrt{3}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔBHA vuông tại H, ta được:
\(BA^2=BH^2+HA^2\)
\(\Leftrightarrow AB^2=\left(2\sqrt{3}\right)^2+2^2=12+4=16\)
hay BA=4(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=BA^2+BC^2\)
\(\Leftrightarrow BC^2=8^2-4^2=48\)
hay \(BC=4\sqrt{3}\left(cm\right)\)
b) Xét ΔABC vuông tại B có
\(\sin\widehat{A}=\dfrac{BC}{CA}=\dfrac{4\sqrt{3}}{8}=\dfrac{\sqrt{3}}{2}\)
\(\cos\widehat{A}=\dfrac{BA}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)
a) Vì AB là đường kính \(\Rightarrow\angle ADB=90\)
\(\Rightarrow\angle ADE=\angle AHE=90\Rightarrow AHDE\) nội tiếp
b) Vì AB là đường kính \(\Rightarrow\angle ACB=90\Rightarrow BC\bot AE\)
Vì \(\left\{{}\begin{matrix}EI\bot AB\\AI\bot BE\end{matrix}\right.\Rightarrow I\) là trực tâm \(\Delta EAB\Rightarrow BI\bot AE\Rightarrow B,I,C\) thẳng hàng
Ta có: \(\angle CFD=\angle CAD\left(CDFAnt\right)=\angle EAD=\angle EHD\)
\(\Rightarrow EH\parallel CH\) mà \(EH\bot AB\Rightarrow CF\bot AB\)
CF cắt AB tại G \(\Rightarrow G\) là trung điểm CF mà \(CF\bot AB\Rightarrow\Delta CBF\) cân tại B
Ta có: \(OA=OC=AC=R\Rightarrow\Delta OAC\) đều \(\Rightarrow\angle CAO=60\)
Vì CAFB nội tiếp \(\Rightarrow\angle CFB=\angle CAB=60\Rightarrow\Delta CFB\) đều
Lời giải:
Theo đề ta có:
\(\text{sđc(AD)}=\frac{1}{3}\text{sđc(AB)}=\frac{1}{9}[\text{sđc(AB)+sđc(BC)+sđc(CD)}]\)
\(=\frac{1}{9}(360^0-\text{sđc(AD)})\)
\(\Rightarrow \text{sđc(AD)}=36^0\)
\(\widehat{BEC}=\frac{\text{sđc(BC)-sđc(AD)}}{2}=\frac{3\text{sđc(AD)}-\text{sđc(AD)}}{2}=\text{sđc(AD)}=36^0\)
Bài 5:
a: \(=\dfrac{a+2\sqrt{a}+a-2\sqrt{a}}{a-4}\cdot\dfrac{a-4}{2\sqrt{a}}=\dfrac{2a}{2\sqrt{a}}=\sqrt{a}\)
b: Để A-2>0 thì căn a-2>0
=>căn a>2
=>a>4
c: Để 4/A+1 là số nguyên thì \(\sqrt{a}+1\inƯ\left(4\right)\)
=>\(\sqrt{a}+1\in\left\{1;2;4\right\}\)
=>\(a\in\left\{1;9\right\}\)
6:
1: BH=căn 15^2-12^2=9cm
BC=15^2/9=25cm
AC=căn 25^2-15^2=20cm
C ABC=15+20+25=60cm
XétΔHAB vuông tại H có sin BAH=BH/AB=9/15=3/5
nên góc BAH=37 độ
2: ΔABC vuông tại A có AH là đường cao
nên CA^2=CH*CB
ΔCAH vuông tại H có HF là đường cao
nên CF*CA=CA^2=CH*CB
3: Xét tứ giác AFHB có
HF//AB
góc AFH=90 độ
=>AFHB là hình thang vuông