Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 4
Các số chia hết cho 2 nhưng không chia hết cho 5 có tận cùng 2, 4, 6, 8 ; mỗi chục có bốn số đó.
Từ 0 đến 999 có 100 chục nên có :
4.100 = 400 (số).
Vậy trong các số tự nhiên nhỏ hơn 1000, có 400 số chia hết cho 2 nhưng ko chia hết cho 5
bài 5
Gọi thương của số tự nhiên x tuần tự là a và b
Theo đề, ta có:
x = 4a + 1
x = 25b + 3
<=> 4a + 1 = 25b + 3
4a = 25b + 2
a = (25b + 2)/4
b = 2 ; a = 13 <=> x = 53
b = 6 ; a = 38 <=> x = 153
b = 10 ; a = 63 <=> x = 253
b = 14 ; a = 88 <=> x = 353
b = 18 ; a = 113 <=> x = 453
Đáp số: Tất cả các số tự nhiên, tận cùng là 53 đều thoả mãn điều kiện.
S=5+52+53+54+55+56+...+52004
S=(5+54)+(52+55)+(53+56)+...+(52000+52004)
S=5x126+52x126+53x126+...+52000x126
\(\Rightarrow\)S chia hết cho 126
S=5+52+53+54+55+56+...+52004
có 65=13*5 mà tổng S chia hết cho 5 nha nên Cm S chia hết cho 13
tổng S có 2004 số số hạng được tách thành 2 phần: S=S1+S2
Với S1=5+53=130=65*2 nên S1 chia hết cho 65
S2=52+54+55+...+52004(có 2002 số số hạng) mà 2002 chia hết cho 13 nên S2 chia hết cho 65
Vậy S chia hết cho 65
Cho mình ****
a) 3A = 3. ( 30 + 31 + 32 +...+ 311)
3A = 31 + 32 +33 +....+ 312
3A - A = 31 +32+33 +...+312 - 30 - 31-32- ...- 311
2A = 312 -1
A = (312 -1) : 2
b) A = ( 30 + 31 + 32 33) + .... + ( 38 + 39 + 310 + 311)
A = 40 + ... + 38 . ( 30 + 31 +32 +33)
A = 40 + ... + 38 .40
A = 40 . ( 1 + ...+ 38)
Vì 40 chia hết cho 40
=> 40. ( 1 + ...+38) chia hết cho 40
Vậy A chia hết cho 40
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a.=> 3A=3+3^2+3^3+...+3^21
=> 2A=3^21-1
=> A=(3^21-1):2
B-A=3^21:2-(3^21-1):2=(3^21-3^21+1):2=1:2
b. C=(11^9+11^8+11^7+11^6+11^5)+(11^4+11^3+11^2+11+1)
vì 11^n luôn có tận cùng là 1
=> (11^9+11^8+11^7+11^6+11^5) có tận cùng là 5
và (11^4+11^3+11^2+11+1) có tận cùng là 5
=> (11^9+11^8+11^7+11^6+11^5) chia hết cho 5 (1)
và (11^4+11^3+11^2+11+1) chia hết cho 5 (2)
Từ (1)(2) => (11^9+11^8+11^7+11^6+11^5)+(11^4+11^3+11^2+11+1) chia hết cho 5
=> C chia hết cho =>DPCM
A = 51 + 52 + ... + 51999+ 52000
A = ( 51 + 52 ) + ... + ( 51999 + 52000 )
A = 51 . ( 1 + 5 ) + ... + 51999 . ( 1 + 5 )
A = 51 . 6 + ... + 51999 . 6 = 6 . ( 51 + ... + 51999 ) \(⋮\)6
Vậy A \(⋮\)6
A = 51 + 52 + 53................... + 52000 chia hết cho 6
A = ( 51 + 52 ) +...................+ ( 51999 + 52000 )
A = ( 5.1 + 5. 5 ) +...................+ ( 51999. 1 + 51999. 5 )
A = ( 5. 1 + 5 ) +.....................+ ( 51999. 1 + 5 )
A = ( 5. 6 ) +....................+ ( 51999. 6 )
Vì ( 5. 6 ) +....................+ ( 51999. 6 ) chia hết cho 6
Nên A chia hết cho 6