K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2019

\(a,\sqrt{x+1}=\sqrt{2-x}\)

\(\Rightarrow x+1=2-x\)

\(\Rightarrow2x=1\)

\(\Rightarrow x=\frac{1}{2}\)

21 tháng 10 2020

a) \(ĐKXĐ:-1\le x\le2\)

Bình phương 2 vế ta có: 

\(x+1=2-x\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)( đpcm )

Vậy \(x=\frac{1}{2}\)

b) \(ĐKXĐ:x\ge1\)

\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}+\sqrt{x-1}=16\)

\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)

\(\Leftrightarrow2\sqrt{x-1}=16\)\(\Leftrightarrow\sqrt{x-1}=8\)

\(\Leftrightarrow x-1=64\)\(\Leftrightarrow x=65\)( thỏa mãn ĐKXĐ )

Vậy \(x=65\)

c) \(ĐKXĐ:x\ge1\)

\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)

\(\Leftrightarrow\sqrt{16\left(x-1\right)}-\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}+\sqrt{x-1}=8\)

\(\Leftrightarrow4\sqrt{x-1}-3\sqrt{x-1}+2\sqrt{x-1}+\sqrt{x-1}=8\)

\(\Leftrightarrow4\sqrt{x-1}=8\)\(\Leftrightarrow\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\)\(\Leftrightarrow x=5\)( thỏa mãn ĐKXĐ )

Vậy \(x=5\)

10 tháng 7 2021

a,\(\sqrt{\left(3x-1\right)^2}=5=>|3x-1|=5=>\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b, \(\sqrt{4x^2-4x+1}=3=\sqrt{\left(2x-1\right)^2}=3=>\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

c, \(\sqrt{x^2-6x+9}+3x=4=>|x-3|=4-3x\)

TH1: \(|x-3|=x-3< =>x\ge3=>x-3=4-3x=>x=1,75\left(ktm\right)\)

TH2 \(|x-3|=3-x< =>x< 3=>3-x=4-3x=>x=0,5\left(tm\right)\)

Vậy x=0,5...

d, đk \(x\ge-1\)

=>pt đã cho \(< =>9\sqrt{x+1}-6\sqrt{x+1}+4\sqrt{x+1}=12\)

\(=>7\sqrt{x+1}=12=>x+1=\dfrac{144}{49}=>x=\dfrac{95}{49}\left(tm\right)\)

a) Ta có: \(\sqrt{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow\left|3x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b) Ta có: \(\sqrt{4x^2-4x+1}=3\)

\(\Leftrightarrow\left|2x-1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

c) Ta có: \(\sqrt{x^2-6x+9}+3x=4\)

\(\Leftrightarrow\left|x-3\right|=4-3x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-23x\left(x\ge3\right)\\x-3=23x-4\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+23x=4+3\\x-23x=4+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{24}\left(loại\right)\\x=\dfrac{-4}{22}=\dfrac{-2}{11}\left(loại\right)\end{matrix}\right.\)

28 tháng 10 2021

\(ĐK:x\ge1\\ PT\Leftrightarrow12\sqrt{x-1}-\sqrt{x-1}-8\sqrt{x-1}+\sqrt{x-1}=16\\ \Leftrightarrow4\sqrt{x-1}=16\\ \Leftrightarrow\sqrt{x-1}=4\\ \Leftrightarrow x-1=16\\ \Leftrightarrow x=17\left(tm\right)\)

28 tháng 10 2021

có thể làm chi tiết hộ em chỗ pt đc 0 ạ??

b: Ta có: \(\sqrt{9x^2-9}+\sqrt{4x^2-4}=\sqrt{16x^2-16}+2\)

\(\Leftrightarrow\sqrt{x^2-1}=2\)

\(\Leftrightarrow x^2-1=4\)

hay \(x\in\left\{\sqrt{5};-\sqrt{5}\right\}\)

30 tháng 9 2021

a. \(x+\sqrt{x^2-4x+4}=\dfrac{1}{2}\)

<=> \(x+\sqrt{\left(x-2\right)^2}=\dfrac{1}{2}\)

<=> \(x+\left|x-2\right|=\dfrac{1}{2}\)

<=> \(\left[{}\begin{matrix}x+x-2=\dfrac{1}{2}\\x+\left[-\left(x-2\right)\right]=\dfrac{1}{2}\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}2x=\dfrac{5}{2}\\x-x+2=\dfrac{1}{2}\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\dfrac{5}{4}\\0=\dfrac{-3}{2}\left(VLí\right)\end{matrix}\right.\)

Vậy nghiệm của PT là \(S=\left\{\dfrac{5}{4}\right\}\)

b. \(\sqrt{9x^2-9}+\sqrt{4x^2-4}=\sqrt{16x^2-16}+2\)

<=> \(\sqrt{9\left(x^2-1\right)}+\sqrt{4\left(x^2-1\right)}=\sqrt{16\left(x^2-1\right)}+2\)

<=> \(3\sqrt{x^2-1}+2\sqrt{x^2-1}-4\sqrt{x^2-1}=2\)

<=> \(\left(3+2-4\right)\sqrt{x^2-1}=2\)

<=> \(\sqrt{x^2-1}=2\)

<=> x2 - 1 = 4

<=> x2 = 5

<=> x = \(\sqrt{5}\)

29 tháng 6 2021

`2sqrt{36x-36}-1/3sqrt{9x-9}-4sqrt{4x-4}+sqrt{x-1}=16`

`ĐK:x>=1`

`pt<=>2sqrt{36(x-1)}-1/3sqrt{9(x-1)}-4sqrt{4(x-1)}+sqrt{x-1}=16`

`<=>12sqrt{x-1}-sqrt{x-1}-8sqrt{x-1}+sqrt{x-1}=16`

`<=>4sqrt{x-1}=16`

`<=>sqrt{x-1}=4`

`<=>x-1=16`

`<=>x=17(tmđk)`

Vậy `S={17}`

c: Ta có: \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)

\(\Leftrightarrow2\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=4\)

hay x=5

e: Ta có: \(\sqrt{4x^2-28x+49}-5=0\)

\(\Leftrightarrow\left|2x-7\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-7=5\\2x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
8 tháng 10 2021

a. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow \sqrt{(x-2)^2}=2-x$

$\Leftrightarrow |x-2|=2-x$
$\Leftrightarrow 2-x\geq 0$

$\Leftrightarrow x\leq 2$

b. ĐKXĐ: $x\geq 2$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x-2}-\frac{1}{5}\sqrt{25}.\sqrt{x-2}=3\sqrt{x-2}-1$

$\Leftrightarrow 2\sqrt{x-2}-\sqrt{x-2}=3\sqrt{x-2}-1$

$\Leftrightarrow 1=2\sqrt{x-2}$

$\Leftrightarrow \frac{1}{2}=\sqrt{x-2}$

$\Leftrightarrow \frac{1}{4}=x-2$

$\Leftrightarrow x=\frac{9}{4}$ (tm)

a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)

\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)

\(\Leftrightarrow4\sqrt{x-3}=20\)

\(\Leftrightarrow x-3=25\)

hay x=28

b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Leftrightarrow2\sqrt{x+2}=6\)

\(\Leftrightarrow x+2=9\)

hay x=7