K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2018

a. Ta có: x2-11=0

⇌ x2=11

\(\left[{}\begin{matrix}x=\sqrt{11}\\x=-\sqrt{11}\end{matrix}\right.\)

b.Ta có: x2-2\(\sqrt{13}\)x+\(\sqrt{13}\)=0

⇌(x-\(\sqrt{13}\))2=0

⇌ x-\(\sqrt{13}\)=0

⇌ x=\(\sqrt{13}\)

c. Ta có : x2-9x+14=0

⇌ (x-7)(x-2)=0

\(\left[{}\begin{matrix}x-7=0\\z-2=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=7\\x=2\end{matrix}\right.\)

d.Ta có \(\sqrt{x}\)-6=13

\(\sqrt{x}\)=19

⇌x = 361

e.Ta có: \(\sqrt{x}\)+9=3

\(\sqrt{x}\)≥0∀x⇒\(\sqrt{x}\)+9≥9

⇒ ptvn

f.Ta có:\(\sqrt{x^2}\)-2x+4=x-1

⇌ |x|-3x-5=0(*)

TH1: x≥0

⇒ pt(*) ⇌ x-3x+5=0⇌-2x-5=0⇒x=\(\dfrac{5}{2}\)(t/m)

TH2: x<0

⇒ pt(*) ⇌ -x-3x+5=0⇌-4x+5=0⇒x=\(\dfrac{5}{4}\)(l)

Vậy x=\(\dfrac{5}{2}\)là nghiệm của phương trình

a: Khi m=0 thì (1) sẽ là x^2-5x+6=0

=>x=2 hoặc x=3

b: 2x1+3x2=13 và x1+x2=m+5

=>2x1+2x2=2m+10 và 2x1+3x2=13

=>x2=13-2m-10=3-2m và x1=m+5-3+2m=3m+2

x1x2=-m+6

=>(-2m+3)(3m+2)=-m+6

=>-6m^2-4m+9m+6=-m+6

=>-6m^2+6m=0

=>m=0 hoặc m=1

NV
21 tháng 4 2021

\(\Leftrightarrow\left(x^2-2x\right)^2+x^2-2x+1-13=0\)

\(\Leftrightarrow\left(x^2-2x\right)^2+x^2-2x-12=0\)

Đặt \(x^2-2x=t\Rightarrow t^2+t-12=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-2x=3\\x^2-2x=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-3=0\\x^2-2x+4=0\left(vô-nghiệm\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

21 tháng 4 2021

Cảm ơn a nhiều!~

16 tháng 2 2022

bạn đăng tách ra cho mn giúp nhé 

a, Để pt có 2 nghiệm pb 

\(\Delta'=1-m\ge0\Leftrightarrow m\le1\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)

\(x_1-3x_2=0\)(3) 

Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=-2\\x_2=-2-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{2}\\x_2=-\dfrac{3}{2}\end{matrix}\right.\)

Thay vào (2) ta được \(m=\left(-\dfrac{1}{2}\right)\left(-\dfrac{3}{2}\right)=\dfrac{3}{4}\)

16 tháng 2 2022

\(b,\Delta=\left(m+5\right)^2-4\left(-m+6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-7-4\sqrt{3}\\m\ge-7+4\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=m+5\\2x1+3x2=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x1+2x2=2m+10\\2x1+3x2=13\end{matrix}\right.\)\(\)

\(\Rightarrow x2=13-2m-10=3-2m\Rightarrow x1=m+5-x2=m+5-3+2m=3m+2\)

\(x1x2=6-m\Rightarrow\left(3-2m\right)\left(3m+2\right)=6-m\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=1\left(tm\right)\end{matrix}\right.\)

\(c,\Delta'=\left(m+1\right)^2-\left(m^2-2m+29\right)\ge0\Leftrightarrow m\ge7\)

\(\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1=2x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x2=\dfrac{2m+2}{3}\\x1=\dfrac{2\left(2m+2\right)}{3}\end{matrix}\right.\)

\(\Rightarrow x1.x2=\dfrac{\left(2m+2\right).2\left(2m+2\right)}{9}=m^2-2m+29\Leftrightarrow\left[{}\begin{matrix}m=11\left(tm\right)\\m=23\left(tm\right)\end{matrix}\right.\)

28 tháng 11 2017

a)

( x − 3 ) 2 + ( x + 4 ) 2 = 23 − 3 x ⇔ x 2 − 6 x + 9 + x 2 + 8 x + 16 = 23 − 3 x ⇔ x 2 − 6 x + 9 + x 2 + 8 x + 16 + 3 x − 23 = 0 ⇔ 2 x 2 + 5 x + 2 = 0

Có a = 2; b = 5; c = 2  ⇒   Δ   =   5 2   –   4 . 2 . 2   =   9   >   0

⇒ Phương trình có hai nghiệm:

Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)

x 3 + 2 x 2 − ( x − 3 ) 2 = ( x − 1 ) x 2 − 2 ⇔ x 3 + 2 x 2 − x 2 − 6 x + 9 = x 3 − x 2 − 2 x + 2 ⇔ x 3 + 2 x 2 − x 2 + 6 x − 9 − x 3 + x 2 + 2 x − 2 = 0 ⇔ 2 x 2 + 8 x − 11 = 0

Có a = 2; b = 8; c = -11  ⇒   Δ ’   =   4 2   –   2 . ( - 11 )   =   38   >   0

⇒ Phương trình có hai nghiệm:

Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có tập nghiệm Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

c)

( x − 1 ) 3 + 0 , 5 x 2 = x x 2 + 1 , 5 ⇔ x 3 − 3 x 2 + 3 x − 1 + 0 , 5 x 2 = x 3 + 1 , 5 x ⇔ x 3 + 1 , 5 x − x 3 + 3 x 2 − 3 x + 1 − 0 , 5 x 2 = 0 ⇔ 2 , 5 x 2 − 1 , 5 x + 1 = 0

Có a = 2,5; b = -1,5; c = 1

⇒   Δ   =   ( - 1 , 5 ) 2   –   4 . 2 , 5 . 1   =   - 7 , 75   <   0

Vậy phương trình vô nghiệm.

Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇔ 2 x ( x − 7 ) − 6 = 3 x − 2 ( x − 4 ) ⇔ 2 x 2 − 14 x − 6 = 3 x − 2 x + 8 ⇔ 2 x 2 − 14 x − 6 − 3 x + 2 x − 8 = 0 ⇔ 2 x 2 − 15 x − 14 = 0

Có a = 2; b = -15; c = -14

⇒   Δ   =   ( - 15 ) 2   –   4 . 2 . ( - 14 )   =   337   >   0

⇒ Phương trình có hai nghiệm:

Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇔ 14 = ( x - 2 ) ( x + 3 ) ⇔ 14 = x 2 - 2 x + 3 x - 6 ⇔ x 2 + x - 20 = 0

Có a = 1; b = 1; c = -20

⇒   Δ   =   1 2 –   4 . 1 . ( - 20 )   =   81   >   0

Phương trình có hai nghiệm:

Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai nghiệm đều thỏa mãn điều kiện xác định.

Vậy phương trình có tập nghiệm S = {-5; 4}.

f) Điều kiện: x≠-1;x≠4

Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta có: a= 1, b = -7, c = - 8

∆   =   ( - 7 ) 2   –   4 . 1 .   ( -   8 ) =   81

=> Phương trình có hai nghiệm:

Giải bài 38 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kết hợp với diều kiện, nghiệm của phương trình đã cho là x = 8

15 tháng 11 2018

a )   x 2   –   5   =   0   ⇔   x 2   =   5   ⇔   x 1   =   √ 5 ;   x 2   =   - √ 5

Vậy phương trình có hai nghiệm  x 1   =   √ 5 ;   x 2   =   - √ 5

Cách khác:

x 2   –   5   =   0   ⇔   x 2   –   ( √ 5 ) 2   =   0

⇔ (x - √5)(x + √5) = 0

hoặc x - √5 = 0 ⇔ x = √5

hoặc x + √5 = 0 ⇔ x = -√5

b)

x 2   –   2 √ 11   x   +   11   =   0   ⇔   x 2   –   2 √ 11   x   +   ( √ 11 ) 2   =   0     ⇔   ( x   -   √ 11 ) 2   =   0

⇔ x - √11 = 0 ⇔ x = √11

Vậy phương trình có một nghiệm là x = √11

8 tháng 2 2019

Phương trình x + x − 1 = 0 có chứa căn thức bên không là phương trình bậc hai một ẩn.

Phương trình 2x + 2y2 + 3 = 9 có chứa hai biến x; y nên không là phương trình bậc hai một ẩn.

Phương trình 1 x 2 + x + 1 = 0 có chứa ẩn ở mẫu thức nên không là phương trình bậc hai một ẩn.

Phương trình 2 x2 + 1 = 0 và x2 + 2019x = 0 là những phương trình bậc hai một ẩn.

Vậy có hai phương trình bậc hai một ẩn trong số các phương trình đã cho.

Đáp án cần chọn là: A

27 tháng 6 2019

b) Gọi  x 1 ; x 2  lần lượt là 2 nghiệm của phương trình đã cho

Theo hệ thức Vi-et ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

x 1 2 + x 2 2  - x 1 x 2  = x 1 + x 2 2 - 3x1 x2 = 4 m 2  + 3(4m + 4)

Theo bài ra:  x 1 2 + x 2 2  -  x 1   x 2 =13

⇒ 4m2 + 3(4m + 4) = 13 ⇔ 4m2 + 12m - 1 = 0

∆ m  = 122 -4.4.(-1) = 160 ⇒ ∆ m = 4 10

Phương trình có 2 nghiệm phân biệt

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy với Đề kiểm tra Toán 9 | Đề thi Toán 9 thì phương trình có 2 nghiệm  x 1 ;  x 2  thỏa mãn điều kiện  x 1 2 + x 2 2  -  x 1   x 2  = 13