Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
a) \(\left(n+2\right)⋮\left(n-3\right)\)
\(\Rightarrow\left(n-3+5\right)⋮\left(n-3\right)\)
\(\Rightarrow5⋮\left(n-3\right)\)
\(\Rightarrow n-3\) là ước của \(5\), ta có:
Trường hợp 1: \(n-3=-1\Rightarrow n=2\)
Trường hợp 2: \(n-3=1\Rightarrow n=4\)
Trường hợp 3: \(n-3=5\Rightarrow n=8\)
Trường hợp 4: \(n-3=-5\Rightarrow n=-2\)
b) Ta có: \(x-3\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow x\in\left\{4;16;2;-10\right\}\)
Vậy để \(x-3\inƯ\left(13\right)\Rightarrow x\in\left\{4;16;2;-10\right\}\)
c) Ta có: \(x-2\inƯ\left(111\right)\)
\(\Rightarrow x-2\in\left\{\pm111;\pm37;\pm3;\pm1\right\}\)
\(\Rightarrow x\in\left\{-99;-35;1;1;3;5;39;113\right\}\)
d) \(5⋮n+15\Rightarrow n+15\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Trường hợp 1: \(n+15=-1\Rightarrow n=-16\)
Trường hợp 2: \(n+15=1\Rightarrow n=-14\)
Trường hợp 3: \(n+15=5\Rightarrow n=-10\)
Trường hợp 4: \(n+15=-5\Rightarrow n=-20\)
Vậy \(n\in\left\{-14;-16;-10;-20\right\}\)
e) \(3⋮n+24\)
\(\Rightarrow n+24\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-23;-25;-21;-27\right\}\)
f) Ta có: \(x-2⋮x-2\)
\(\Rightarrow4\left(x-2\right)⋮x-2\)
\(\Rightarrow4x-8⋮x-2\)
\(\Rightarrow\left(4x+3\right)-\left(4x-8\right)⋮x-2\)
\(\Rightarrow11⋮x-2\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\in\left\{3;13;1;-9\right\}\)
ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.
Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.
*Bạn ơi, bài 3 mình ko hiểu đề cho lắm ấy?? Bạn xem lại đề thử nhé!! Nhớ tk giúp mình nha 😊*
Bài 1:
Tổng các số nguyên x thỏa mãn bài toán là:
-99+(-98)+(-97)+(-96)+...+95+96
= -99+(-98)+(-97)+(-96+96)+(-95+95)+...+(-1+1)+0
= -99+(-98)+(-97)+0+0+...+0
= -294
Bài 4:
n-1 thuộc Ư(15)={1;-1;3;-3;5;-5;15;-15}
=> n thuộc {2;0;4;-2;6;-4;16;-14}
Mà n thuộc N
Do đó: n thuộc {2;0;4;6;16}
Vậy...
Bài 5:
5+n chia hết cho n+1
=> (n+1)+4 chia hết cho n+1
Vì n+1 chia hết cho n+1
Nên 4 chia hết cho n+1
Hay n+1 thuộc Ư(4)={1;-1;2;-2;4;-4}
=> n thuộc {0;-2;1;-3;3;-5}
Vậy...
Bài 1: Các số nguyên x thỏa mãn là: -99; -98 ; -97;....; 96
Tổng các số nguyên x là: (-99)+ (-98) + (97) +...+96
= ( -96+96) + (-95+95) +...+ (-99) + (-98) +(-97)
= -294
Vậy...
Bài 5
Ta có (5+n)=(n+1)+4
Vì (n+1)\(⋮\)(n+1)
Để [(n+1)+4]\(⋮\)(n+1)<=>4\(⋮\)(n+1)<=>(n+1)\(\in\)Ư(4)={±1;±2;±4}
Ta có bảng sau
n+1 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -5 | -3 | -2 | 0 | 1 | 3 |
Vậy...
1)
x - 18 = 3x + 4
=> x - 3x = 4 + 18
=> -2x = 22
=> x = 22 : (-2)
=> x = -11
Vậy x = -11
a, n+2 chia hết cho n-3
Suy ra (n-3)+5 chia hết cho n-3
Suy ra 5 chia hết cho n-3 vì n-3 chia hết cho n-3
suy ra n-3 \(\in\)Ư(5)={-1;-5;1;5}
Ta có bảng giá trị
Vậy n={2;-2;4;8}
b, ta có Ư(13)={-1;-13;1;13}
ta có bảng giá trị
Vậy n={2;-10;4;16}
c, ta có Ư(111)={-1;-111;;-3;-37;1;111;3;37}
ta có bảng giá trị
Vậy n={1;-99;-1;-39;3;5;113;39}