K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

|------------| Tuổi em trước đây

|------------|------------| Tuổi anh trước đây

|------------|------------| Tuổi em hiện nay

|------------|------------|------------| Tuổi anh hiện nay

Coi tuổi em trước đây là 1 phần thì tuổi anh trước đây hay tuổi em hiện nay là 2 phần như thế. Hiện nay tuổi em gấp đôi tuổi em trước đây tức là tuổi em tăng thêm 1 phần thì tuổi anh cũng tăng thêm 1 phần như thê

=> Tuổi em hiện nay là 2 phần thì tuổi anh là 3 phần

Tổng số phần bằng nhau là

2+3=5 phần

Giá trị 1 phần là

60:5=12 tuổi

Tuổi em hiện nay là

2x12=24 tuổi

Tuổi anh là

60-24=36 tuổi

2 tháng 8 2019

\(x^2-2x+y^2+4y+5=0\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

Mà \(\left(x-1\right)^2\ge0\forall x\)

       \(\left(y+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x;y\)

Dầu "=" xảy ra<=> \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)

13 tháng 1 2015

1) Vì a, b là số nguyên tố và a - 1 chia hết cho b nên a là số nguyên tố lẻ >=3 và b =2( vì a -1 chẵn)

b3 - 1 = 7 chia hết cho a, nên a =7. Vậy a = b2 + b + 1( 7 = 22 + 2 + 1)

28 tháng 9 2016

\(\frac{3}{2}x^2+y^2+z^2+yz=1\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

Suy ra : \(A^2\le2\Rightarrow A\le\sqrt{2}\)

Vậy Max A = \(\sqrt{2}\) khi \(\hept{\begin{cases}x=y\\x=z\\x+y+z=\sqrt{2}\end{cases}\Leftrightarrow}x=y=z=\frac{\sqrt{2}}{3}\)

28 tháng 9 2016

tuyệt

15 tháng 10 2019

\(x^2+xy-2y^2=0< =>\left(x-y\right)\left(x+2y\right)=0< =>\)x=y (vì x+2y>0 với x;y>0)

A= (2013x2+2x2)(2014x2+2x2) = 2015.2016.x4

13 tháng 2 2018

theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)

A=\(\dfrac{x-y}{x+y}\)

=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)

=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)

vì y>x>0=> A=-1/2

14 tháng 8 2018

Bài 1 :

Câu a : \(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\)

Câu b : \(A=x^2-3x+5=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

Vậy \(GTNN\) của \(A\)\(\dfrac{11}{4}\) . Dấu \("="\) xảy ra khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)

14 tháng 8 2018

Bài 2 :

Câu a : \(x^2-6x+y^2-4y+13=0\)

\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y-2\right)^2=0\)

Do : \(\left(x-3\right)^2\ge0\) and \(\left(y-2\right)^2\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Vậy \(x=3\) and \(y=2\)

Câu b : \(4x^2-4x+y^2+6y+10=0\)

\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(y+3\right)^2=0\)

Because the : \(\left(2x-1\right)^2\ge0\) and \(\left(y+3\right)^2\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(2x-1\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy \(x=\dfrac{1}{2}\)\(y=-3\)

1 tháng 1 2016

chtt nha