K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

\(P=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|\)

\(=\left|x+3\right|+\left|x-2\right|+\left|5-x\right|\)

\(\ge x+3+0+5-x=8\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+3\ge0\\x-2=0\\5-x\le0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\ge-3\\x=2\\x\le5\end{cases}}\)\(\Rightarrow x=2\)

Vậy \(Min_P=8\Leftrightarrow x=2\)

25 tháng 12 2016

Gia trị nhỏ nhất của biếu thức bằng 8 khi đó x = -2

GTNN của A là 8 chắc chắn luôn

22 tháng 2 2016

A= I x+3I+I x-5I

<=>I x+3I+I5-xI >=I x+3 +5-x I=8

Dấu = xãy ra <=> (x+3)(5-x)>=0

phân 2 trường hợp 

Trường hợp 1

x+3>=0

và 5-x>=0

<=>-3<=x<=5 (nhận)

trường hợp 2

x+3<=0

và 5-x <=0

<=> -3>=x >=5 (loại)

vậy minA=8<=>-3<=x<=5

29 tháng 5 2021

\(P=\left[\left(\dfrac{-1}{3}\right)^2x^3+\left(2x^2\right)^2+\dfrac{1}{2}\right]-\left[x\left(\dfrac{1}{3}x\right)^2+\dfrac{3}{2^3}+x^4\right]+\left(y-2013\right)^2=\left(\dfrac{1}{9}x^3+4x^4+\dfrac{1}{2}\right)-\left(\dfrac{1}{9}x^3+x^4+\dfrac{3}{8}\right)+\left(y-2013\right)^2=3x^4+\dfrac{1}{8}+\left(y-2013\right)^2\ge\dfrac{1}{8}\).

Dấu "=" xảy ra khi x = 0; y = 2013.

27 tháng 12 2015

A=|x+3|+|x-5| = |x+3|+|5-x| \(\ge\)|x+3+5-x| =8

=>Min A = 8 khi  5\(\ge\)x\(\ge\)3

23 tháng 1 2017

Giải :(x2+2xy+y2)+y2-6x-8y+2024=(x+y)2-2(x+y)3+y2-2y+2024

=(x+y-3)2+(y2-2y+1)+2014=(x+y-3)2+(y-1)2+2014 >=2014

vì (x+y-3)2;(y-1)2>=0 với mọi x;y

nên Pmin=2014khi y=1;x=2

23 tháng 1 2017

MinP=2024 nha!

4 tháng 12 2021

B

5 tháng 12 2016

\(x^{2016}\ge0\)

\(\Rightarrow x^{2016}+5\ge5\)

\(\Rightarrow\left(x^{2016}+5\right)^3\ge5^3\ge125\)

Dấu ''='' xảy ra khi x = 0

\(Min=125\Leftrightarrow x=0\)

5 tháng 12 2016

Phương An ahihi đc rồi oaoa

20 tháng 11 2016

\(|x+3|+|x+5|=|x+3|+|-x-5|\ge|x+3-x-5|=|-2|=2\)

Vậy GTNN của biểu thức trên là 2 tại x = -3 hoặc x = -5

20 tháng 11 2016

GTNN là 8

NV
12 tháng 12 2021

\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)

\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)

\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)

\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)