Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2 x 2 + 1 2 ≥ 2 x ; 2 y 2 + 1 2 ≥ 2 y và x 2 + y 2 ≥ 2 x y
Cộng vế với vế các BĐT trên ta được:
3 x 2 + y 2 + 1 ≥ 2 x + y + x y = 5 2
=> A = x 2 + y 2 ≥ 1 2
Từ đó tìm được A m i n = 1 2 <=> x = y = 1 2
\(\left\{{}\begin{matrix}x+y=2\left(m-1\right)\left(1\right)\\2x-y=m+8\left(2\right)\end{matrix}\right.\)
Cộng từng vế của (1) và (2) ta được:
\(3x=3m+6=3\left(m+2\right)\) \(\Leftrightarrow x=m+2\) Thay vào (2) ta được:
\(\Rightarrow2\left(m+2\right)-y=m+8\) \(\Leftrightarrow y=2m+4-m-8=m-4\)
\(\Rightarrow x^2+y^2=\left(m+2\right)^2+\left(m-4\right)^2=m^2+4m+4+m^2-8m+16=2m^2-4m+20=2m^2-4m+2+18=2\left(m^2-2m+1\right)+18=2\left(m-1\right)^2+18\ge18\)
GTNN của \(x^2+y^2=18\Leftrightarrow m=1\)
Sử dụng Bdt thức \(ab\le\left(\frac{a+b}{2}\right)^2\) với \(a,b>0\).
Tự chứng minh
\(------------------\)
Áp dụng bđt trên, ta có:
\(A=x^2y=\frac{1}{2}.2x.xy\le\frac{1}{2}\left(\frac{2x+xy}{2}\right)^2=\frac{1}{8}\left(2x+xy\right)^2=\frac{1}{8}.4^2=2\)
Dấu \("="\) xảy ra khi và chỉ khi \(\hept{\begin{cases}2x=xy\\2x+xy=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
Kết luận: .....
dự đoán của chúa Pain x=y=1
áp dụng BDT cô si ta có
\(A\ge2\sqrt{\frac{\left(x+y+1\right)^2.\left(xy+x+y\right)}{\left(xy+x+y\right)\left(x+y+1\right)^2}}=2.\)
dấu = xảy ra khi
\(\left(x+y+1\right)^2=xy+x+y\) :)