Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(2x=\dfrac{1}{3}\)
hay \(x=\dfrac{1}{6}\)
Vậy: \(A_{min}=-\dfrac{7}{4}\) khi \(x=\dfrac{1}{6}\)
b) Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)
\(\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)
Do đó: \(\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)
\(\Leftrightarrow\dfrac{1}{3}\left|x-2\right|+\left|3-\dfrac{1}{2}y\right|+4\ge4\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)
Vậy: \(B_{min}=4\) khi x=2 và y=6
a) Nhận xét :
/ x + 8 / > 0 với mọi x
/ y - 3 / > 0 với mọi y
=> / x + 8 / + / y - 3 / > 0
=> / x + 8 / + / y - 3 / + 2018 > 2018
=> M > 2018
=> Giá trị nhỏ nhất của M = 2018
Dấu " = " xảy ra khi :
/ x + 8 / = 0
và / y - 3 / = 0
=> x + 8 = 0
và y - 3 = .0
=> x = - 8
Và y = 3
Vậy giá trị nhỏ nhất của M là 2018 khi x = - 8 và y = 3
b) Nhận xét :
/ x + 2 / > 0 với mọi x
/ y - 1 / > 0 với mọi y
=> / x + 2 / + / y - 1 / > 0
=> - / x + 2 / - / y - 1 / < 0
=> - / x + 2 / - / y - 1 / + 1999 < 1999
=> N < 1999
=> Giá trị lớn nhất của N = 1999
Dấu " = " xảy ra khi :
/ x + 2 / = 0
và / y - 1 / = 0
=> x + 2 = 0
và y - 1 = 0
=> x = - 2
và y = 1
Vậy giá trị lớn nhất của N là 1999 khi x = - 2 và y = 1
1, A= 2x2+1
Ta có : 2x2\(\ge0\forall x\)
\(\Rightarrow2x^2+1\ge1\)
Dấu ''='' xảy ra <=> x=0
Vậy Min A = 1 khi x =0
2.B=2(x - 1)2+4
Ta có 2(x - 1)2\(\ge0\forall x\)
=> B\(\ge4\)
Dấu ''='' xảy ra khi x = 1
Vậy Min B = 4 khi x =1
\(B=\left|x+2,8\right|-3,5\)
\(\left|x+2,8\right|\ge0\)
\(\Rightarrow\left|x+2,8\right|-3,5\ge-3,5\)
\(\Rightarrow\)GTNN của B là -3,5
\(A=\frac{1}{2}-\left|2x-3\right|\)
\(\left|2x-3\right|\ge0\)
\(\Rightarrow\frac{1}{2}-\left|2x-3\right|\le\frac{1}{2}\)
\(\Rightarrow\)GTLN của A là \(\frac{1}{2}\)khi và chỉ khi \(2x-3=0\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\frac{3}{2}\)
cái này mình chịu thua
hình như gtnn nó ko có vì tùy theo x và ko có số lớn nhất nhỏ nhất
1) Để A có giá trị nhỏ nhất thì 2x^2 phải có giá trị dương nhỏ nhất. Nhận thấy rằng 2x^2 >= 0 với mọi x.
Dấu = xảy ra khi 2x^2 = 0, khi đó x = 0.
Vậy để A đạt GTNN thì x = 0, khi đó A = 2 * 0^2 + 1 = 0 + 1 = 1.
2) Để B có giá trị nhỏ nhất thì 2(x - 1)^2 phải có giá trị dương lớn nhất. Nhận thấy rằng 2(x - 1)^2 >= 0 với mọi x.
Dấu = xảy ra khi 2(x - 1)^2 = 0, khi đó x = 1.
Vậy để B đạt GTNN thì x = 1, khi đó B = 2(1 - 1)^2 + 4 = 0 + 4 = 4.
\(1)\) Ta có :
\(\left|2x-1\right|\ge0\)
\(\Leftrightarrow\)\(A=\left|2x-1\right|+8\ge8\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|2x-1\right|=0\)
\(\Leftrightarrow\)\(2x-1=0\)
\(\Leftrightarrow\)\(2x=1\)
\(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy GTNN của \(A\) là \(8\) khi \(x=\frac{1}{2}\)
Chúc bạn học tốt ~
\(2)\) Ta có :
\(B=\left|x-3\right|+\left|x-9\right|-1\)
\(B=\left|x-3\right|+\left|9-x\right|-1\ge\left|x-3+9-x\right|-1=\left|6\right|-1=6-1=5\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-3\right)\left(9-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-3\ge0\\9-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le9\end{cases}\Leftrightarrow}3\le x\le9}\)
Trường hợp 2 :
\(\hept{\begin{cases}x-3\le0\\9-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge9\end{cases}}}\) ( loại )
Vậy GTNN của \(B\) là \(5\) khi \(3\le x\le9\)
Chúc bạn học tốt ~
Để C là số nguyên thì x chia hết cho 2x-1
=>2x chia hết cho 2x-1
=>2x-1+1 chia hết cho 2x-1
=>\(2x-1\in\left\{1;-1\right\}\)
mà x lớn nhất
nên 2x-1=1
=>x=1
a: Ta có: \(-\left(x+5\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(x+5\right)^2+2021\le2021\forall x\)
Dấu '=' xảy ra khi x=-5
3:
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(2x+1\right)^2+2021\ge2021\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)