Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
\(P=\dfrac{3x^2+6x+3}{x+1}\)
\(a,\) Điều kiện xác định: \(x+1\ne0\Leftrightarrow x\ne-1\)
\(b,P=\dfrac{3x^2+6x+3}{x+1}=\dfrac{3\left(x^2+2x+1\right)}{x+1}=\dfrac{3\left(x+1\right)^2}{x+1}=3\left(x+1\right)=3x+3\)
\(c,x=1\Rightarrow P=3.1+3=6\)
a) ĐKXĐ: \(^{x^3+2x^2+x+2}\)khác 0
=> x^2(x+2)+(x+2) Khác 0
=> (x^2+1)(x+2) khác 0
=> x^2 khác -1(vô lý) và x khác -2
Vậy x khác -2 thì biểu thức A được xác định
b)\(A=\frac{3x^3+6x^2}{x^3+2x^2+x+2}=\frac{3x^2\left(x+2\right)}{x^2\left(x+2\right)+\left(x+2\right)}\)
\(=\frac{3x^2\left(x+2\right)}{\left(x^2+1\right)\left(x+2\right)}=\frac{3x^2}{x^2+1}\)
Để A=2 thì \(\frac{3x^2}{x+2}=2\)=>\(3x^2=2\left(x^2+1\right)=>3x^2=2x^2+2\)
\(=>x^2=2=>x=\sqrt{2}\)(Thỏa mãn điều kiện xác định)
\(\frac{3x^2+6x^2\left(xemlai\right)6x^2hay\left(6x\right)}{x^3+2x^2+x+2}=\frac{9x^2\left(culamtheode\right)}{x^3\left(x+2\right)+x+2=9}=\frac{9x^2}{\left(x^3+1\right)\left(x+2\right)}=\frac{9x^2}{\left(x+1\right)\left(x+2\right)\left(x^2-x+1\right)}\)
a)
\(x+1\ne0;x+2\ne0;x^2-x+1\ne0\)
\(x\ne-1;-2\)
b) khi 1<x<2 gia tri phan thuc <0 (-) xem lai
\(a,ĐK:x^2-1=\left(x-1\right)\left(x+1\right)\ne0\Leftrightarrow x\ne\pm1\\ \dfrac{3x+3}{x^2-1}=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x-1}=2\\ \Leftrightarrow x-1=\dfrac{3}{2}\Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\\ b,\dfrac{3}{x-1}\in Z\\ \Leftrightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow x\in\left\{-2;0;2;4\right\}\left(tm\right)\)
a/ A=\(\frac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\frac{x}{3x-1}\)
A xác định khi 3x-1 #0 <=> x khác 1/3
b/ x=8 => A=\(\frac{8}{3.8-1}=\frac{8}{23}\)
c/ A\(\le0\)Khi:
+/\(\hept{\begin{cases}x\ge0\\3x-1\le0\end{cases}}< =>0\le x\le\frac{1}{3}\)
+/ \(\hept{\begin{cases}x\le0\\3x-1\ge0\end{cases}}\)Không có giá trị x phù hợp
Vậy để A<0 <=> \(0\le x\le\frac{1}{3}\)
a,\(\frac{3x^2-x}{9x^2-6x+1}=\frac{x\left(3x-1\right)}{\left(3x-1\right)^2}=\frac{x}{3x-1}\)
Vậy đk xác định của phân thức là \(x\ne\frac{1}{3}\)
b, Ta thay x=8
\(\frac{x}{3x-1}=\frac{8}{3.8-1}=\frac{8}{23}\)
c, x<0
\(\Rightarrow\frac{x}{3x-1}=-1\Leftrightarrow x=0,25\)