K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

là 99/100

8 tháng 3 2017

Ta có :\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\) 

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

10 tháng 8 2016

\(B=1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}.\)

\(B=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{99}+\frac{1}{100}\)

\(B=1+1-\frac{1}{100}=2-\frac{1}{100}\)

\(B=\frac{199}{100}\)

\(C=\frac{1}{1.2}+\frac{1}{2.3}+........+\frac{1}{n\left(n+1\right)}\)

\(C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{n}-\frac{1}{n+1}\)

\(C=1-\frac{1}{n+1}\)

\(C=\frac{n+1-1}{n+1}=\frac{n}{n+1}\)

10 tháng 8 2016

Áp dụng công thức tình dãy số ta có :

\(D=\frac{\left[\left(n-1\right):1+1\right].\left(n+1\right)}{2}=\frac{n.\left(n+1\right)}{2}\)

5 tháng 7 2016

\(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

   \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

   \(=1-\frac{1}{100}\)

   \(=\frac{99}{100}< 1\Rightarrowđpcm\)

5 tháng 7 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)

Mà : \(\frac{99}{100}< 1\)

Vậy : S < 1

2 tháng 8 2016

\(\frac{3}{1.2}+\frac{3}{2.3}+........+\frac{3}{99.100}\)

\(=3\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{99.100}\right)\)

\(=3\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{99}-\frac{1}{100}\right)\)

\(=3\left(1-\frac{1}{100}\right)\)

\(=\frac{3.99}{100}=\frac{297}{100}\)

7 tháng 2 2020

H = \(\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+\frac{1}{3.4}-\frac{1}{3.4.5}+...+\frac{1}{99.100}-\frac{1}{99.100.101}\)

   \(=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{99.100.101}\right)\)

Đặt G = \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)

          = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

          = \(1-\frac{1}{100}\)

           = \(\frac{99}{100}\)

Đặt K = \(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{99.100.101}\right)\)

=>2K = \(\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+....+\frac{2}{99.100.101}\right)\)

          = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\)

          = \(\frac{1}{1.2}-\frac{1}{100.101}\)

          = \(\frac{1}{2}-\frac{1}{10100}\)

          = \(\frac{5049}{10100}\)

=> K =\(\frac{5049}{10100}:2=\frac{5049}{10100}.\frac{1}{2}=\frac{5049}{20200}\)

Thay G,K vào H ta có :

H = \(\frac{99}{100}-\frac{5049}{20200}\)

Tự tính :)

7 tháng 2 2020

\(H=\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+...+\frac{1}{99.100}-\frac{1}{99.100.101}\)

\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.34}+...+\frac{1}{99.100.101}\right)\)

\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{99.100.101}\right)\)

\(=\left(1-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)

\(=\frac{99}{100}-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)=\frac{99}{100}-\frac{1}{2}.\frac{5049}{10100}=\frac{99}{100}-\frac{5049}{20200}=\frac{14949}{20200}\)

6 tháng 12 2015

sao nhiều vậy!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

24 tháng 3 2023

F = 1- 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100

= 1 - 1/100

= 99/100

24 tháng 7 2017

A=1/1x2+1/2x3+...+1/99x100

A=1-1/2+1/2-1/3+1/3-...+1/99-1/00

A=1-1/100

A=99/100

1 tháng 8 2017

ai nhanh nhất tớ tk cho

8 tháng 8 2017

=1/7x8