K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2022

áp dụng dịnh lý pytago vào tam giác abc vuông tại a

ab+ac =bc

ac=10^2-6^2

ac =100-36=64

ac=căn 64=8

vậy ac =8cm

b

xét tam giác bad và tam giác bed

bad =bed =90 

bd là cạnh chung

abd =dbe 

tam giác bad =tam giác bed

ta có ab =de (2 cạnh tưng ứng

ta có gọi g là giao điểm của bd và ae 

xét tam giác bag và am giác bge

bd là cạnh chung 

ba =be 

gba=gbe 

tam giác bag =tam giác bge

ta có ga=ge 

mà gae =180  kề bù

ag+ge =180 

2 ag =180 

ag =90

ta có ad =de 

ag =ge=90 

bd là đường trung trực cửa ae

dpcm 

khong làm c và d dc

 

1 tháng 5 2022

a) Xét định lí Pi ta go , ta có

AB2+AC2=BC2

⇒ AC2=BC2−AB2

=102−62=100−36=64=82

⇒ AC = 8cm

1 tháng 5 2022

ng ta cần câu b vơi c

 

a: AC=căn 10^2-6^2=8cm

AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=BE và DA=DE

=>BD là trung trực của AE

17 tháng 4 2021

Đáp án:

a) 

Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=5√3(cm)Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=53(cm)

b) Xét ΔABD và ΔEBD vuông tại A và E có:

+góc ABD = góc EBD

+ BD chung

=>ΔABD = ΔEBD (cg-gn)

c) Xét ΔABC và ΔEBF vuông tại A và E có:

+ AB = EB (do ΔABD = ΔEBD)

+ góc ABC chung

=>ΔABC = ΔEBF (cgv-gn)

d) Do ΔABC = ΔEBF nên BC = BF

Xét ΔBFG và ΔBCG có:

+ BF = BC
+ BG chung

+ FG = CG

=> ΔBFG = ΔBCG (c-c-c)

=> góc FBG = góc CBG
=> BG là phân giác của góc ABC
=> BG đi qua D

=> AC,BG, EF đồng quy tại D.

image

17 tháng 4 2021

a) 

Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=5√3(cm)Pytago:AB2+AC2=BC2⇒AC2=102−52=75⇒AC=53(cm)

b) Xét ΔABD và ΔEBD vuông tại A và E có:

+góc ABD = góc EBD

+ BD chung

=>ΔABD = ΔEBD (cg-gn)

c) Xét ΔABC và ΔEBF vuông tại A và E có:

+ AB = EB (do ΔABD = ΔEBD)

+ góc ABC chung

=>ΔABC = ΔEBF (cgv-gn)

d) Do ΔABC = ΔEBF nên BC = BF

Xét ΔBFG và ΔBCG có:

+ BF = BC
+ BG chung

+ FG = CG

=> ΔBFG = ΔBCG (c-c-c)

=> góc FBG = góc CBG
=> BG là phân giác của góc ABC
=> BG đi qua D

=> AC,BG, EF đồng quy tại D.

a: \(AC=5\sqrt{3}\left(cm\right)\)

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

Suy ra: BA=BE

hay B nằm trên đường trung trực của AE(1)

Ta có: ΔABD=ΔEBD

nên DA=DE
nên D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD⊥AE

 

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-5^2=75\)

hay \(AC=5\sqrt{3}cm\)

Vậy: \(AC=5\sqrt{3}cm\)