K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 2 2018

Lời giải:

ĐKXĐ: \(y\neq \pm 5; y\neq 0\)

Ta có:

\(\frac{y+1}{y^2-5y}-\frac{y-5}{2y^2+10y}=\frac{y+25}{2y^2-50}\)

\(\Leftrightarrow \frac{y+1}{y(y-5)}-\frac{y-5}{2y(y+5)}-\frac{y+25}{2(y^2-25)}=0\)

\(\Leftrightarrow \frac{2(y+1)(y+5)}{2y(y-5)(y+5)}-\frac{(y-5)(y-5)}{2y(y+5)(y-5)}-\frac{y(y+25)}{2y(y^2-25)}=0\)

\(\Leftrightarrow \frac{2(y^2+6y+5)}{2y(y^2-25)}-\frac{y^2-10y+25}{2y(y^2-25)}-\frac{y^2+25y}{2y(y^2-25)}=0\)

\(\Leftrightarrow \frac{2(y^2+6y+5)-(y^2-10y+25)-(y^2+25y)}{2y(y^2-25)}=0\)

\(\Leftrightarrow \frac{-3(y+5)}{2y(y^2-25)}=0\)

\(\Leftrightarrow -3(y+5)=0\Leftrightarrow y+5=0\Leftrightarrow y=-5\) (không t/m ĐKXĐ)

Vậy PT vô nghiệm.

11 tháng 2 2018

\(\dfrac{y+1}{y^2-5y}-\dfrac{y-5}{2y^2+10y}=\dfrac{y+25}{2y^2-50}\left(ĐKXĐ:y\ne O;y\ne\pm5\right)\)

\(\Leftrightarrow\dfrac{y+1}{y\left(y-5\right)}-\dfrac{y-5}{2y\left(y+5\right)}=\dfrac{y+25}{2\left(y-5\right)\left(y+5\right)}\)

\(\Leftrightarrow\dfrac{2\left(y+1\right)\left(y+5\right)-\left(y-5\right)^2}{2y\left(y-5\right)\left(y+5\right)}=\dfrac{y\left(y+25\right)}{2y\left(y-5\right)\left(y+5\right)}\)

\(\Rightarrow2\left(y+1\right)\left(y+5\right)-\left(y-5\right)^2=y\left(y+25\right)\)

\(\Leftrightarrow\left(2y+2\right)\left(y+5\right)-\left(y^2-10y+25\right)=y^2+25y\)

\(\Leftrightarrow2y^2+10y+2y+10-y^2+10y-25=y^2+25y\)

\(\Leftrightarrow y^2+22y-15=y^2+25y\)

\(\Leftrightarrow y^2-y^2+22y-25y=15\)

\(\Leftrightarrow-3y=15\)

\(\Leftrightarrow y=-5\) (ko thỏa mãn ĐKXĐ)

Vậy ....................

14 tháng 1 2021

a) ĐKXD: x ≠ 2

\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)

\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{3-x}{x-2}=-3\)

\(\Leftrightarrow\dfrac{1-3+x}{x-2}=-3\)

\(\Leftrightarrow\dfrac{-2+x}{x-2}=-3\)

\(\Leftrightarrow-2+x=-3\left(x-2\right)\)

\(\Leftrightarrow-2+x=-3x+6\)

\(\Leftrightarrow x+3x=6+2\)

\(\Leftrightarrow4x=8\)

\(\Leftrightarrow x=2\) (loại vì không thỏa mãn điều kiện)

Vậy S = ∅

b) ĐKXĐ: x ≠ 7

 \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)

\(\Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{1}{x-7}=8\)

\(\Leftrightarrow\dfrac{7-x}{x-7}=8\)

\(\Leftrightarrow-1=8\left(vô-lý\right)\)

Vậy S = ∅ 

P/s: Ko chắc ạ! 

14 tháng 1 2021

c) ĐKXĐ: x ≠ 1

\(\dfrac{1}{x-1}+\dfrac{2x}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\)

Quy đồng và khử mẫu ta được:

\(x^2+x+1+2x\left(x-1\right)=3x^2\)

\(\Leftrightarrow x^2+x+1+2x^2-2x-3x^2=0\)

\(\Leftrightarrow-x+1=0\)

\(\Leftrightarrow x=1\) (loại vì ko t/m đk)

Vậy S = ∅

 

a: =-1/5x^5y^2

b: =-9/7xy^3

c: =7/12xy^2z

d: =2x^4

e: =3/4x^5y

f: =11x^2y^5+x^6

16 tháng 12 2022

f: \(=\dfrac{5x-3-x+3}{4x^2y}=\dfrac{4x}{4x^2y}=\dfrac{1}{xy}\)

g: \(=\dfrac{3x+10-x-4}{x+3}=\dfrac{2x+6}{x+3}=2\)

h: \(=\dfrac{4-2+x}{x-1}=\dfrac{x+2}{x-1}\)

n: \(=\dfrac{3x-x+6}{x\left(x+3\right)}=\dfrac{2\left(x+3\right)}{x\left(x+3\right)}=\dfrac{2}{x}\)

p: \(=\dfrac{x^2-9-x^2+9}{x\left(x-3\right)}=0\)

k: \(=\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{-6}{x^2-4}\)

m: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)

a: \(\left(\dfrac{1}{3}x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)=\dfrac{1}{27}x^3+8y^3\)

b: \(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=x^6-\dfrac{1}{27}\)

c: \(\left(y-5\right)\left(y^2+5y+25\right)=y^3-125\)