Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét \(\Delta ABD\)và \(\Delta EBD\)có :
\(\widehat{ABD}\)=\(\widehat{EBD}\)( BD là tia p/g của \(\widehat{ABC}\) )
BD chung ( gt )
\(\widehat{BAD}\)= \(\widehat{BED}\)( = 90o )
\(\Rightarrow\Delta ABD=\Delta BED\)( ch - gn )
\(\Rightarrow AB=BE\)( 2 cạng t.ư )
b, Xét \(\Delta ABE\)có :
AB = AE ( câu a ) \(\Rightarrow\Delta ABE\)cân tại B
BF là đường p/g của \(\Delta ABE\)
\(\Rightarrow BF\perp AF\)hay BD là đường tt của AE
c, Ta có : \(AB\perp AC\left(gt\right)\)
\(DK\perp AC\left(gt\right)\)
\(\Rightarrow AB//DK\)
\(\Rightarrow\widehat{ABD}\)= \(\widehat{BDK}\)(SLT)
Mà \(\widehat{ABD}\)= \(\widehat{DBE}\)( BD là tia p/g \(\widehat{ABE}\))
\(\Rightarrow\widehat{BDK}\)= \(\widehat{DBK}\)
Xét \(\Delta DBK\)có :
\(\widehat{BDK}\)= \(\widehat{DBK}\)(cmt)
\(\Rightarrow\Delta BDK\)cân tại K
\(\Rightarrow BK=KD\left(đpcm\right)\)
d, Xét \(\Delta ABH\)có : AB < BH + AH
Xét \(\Delta AHC\)có : AC < AH + CH
\(\Rightarrow AB+AC< AH+BH+AH+CH\)
Hay \(AB+AC< BC+2AH\left(đpcm\right)\)
a, Xét \(\Delta ABD\)và \(\Delta EBD\)có :
\(\widehat{ABD}\)\(=\widehat{EBD}\)( BD là tia p/g của \(\widehat{ABC}\))
BD chung ( gt )
\(\widehat{BAD}\)\(=\widehat{BED}\)( = 90o )
\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)
\(\Rightarrow AB=BE\)( 2 cạnh t.ư )
b, Xét \(\Delta ABE\)có :
AB = BE ( câu a )
\(\Rightarrow\)\(\Delta ABE\)cân tại B
Mà BF là đường p/g của \(\Delta ABE\)
\(\Rightarrow BF\perp AF\)hay BD là đường tt của AE
c, Ta có :
\(\hept{\begin{cases}AB\perp AC\left(gt\right)\\DK\perp Ac\left(gt\right)\end{cases}}\Rightarrow\hept{ }AB//DK\)
\(\Rightarrow\widehat{ABD=}\)\(\widehat{BDK}\)(SLT)
Mà\(\widehat{ABD}\)\(=\widehat{DBE}\)( BD là tia p/g \(\widehat{ABE}\))
\(\Rightarrow\widehat{BDK}\)\(=\widehat{DBK}\)
Xét \(\Delta BDK\)có :
\(\widehat{BDK}\)\(=\widehat{DBK\left(cmt\right)}\)
\(\Rightarrow\Delta BDK\)cân tại K
\(\Rightarrow BK=DK\left(dpcm\right)\)
d, Xét \(\Delta ABH\)có : \(AB< BH+AH\)(1)
Xét \(\Delta AHC\)có : \(AC< AH+CH\)(2)
Từ (1) và (2) \(\Rightarrow AB+AC< AH+BH+AH+CH\)
Hay \(AB+AC< BC+2AH\left(dpcm\right)\)
a: Tacó ΔABC cân tại A
mà AD là đường phân giác
nên D là trug điểm của BC và AD\(\perp\)BC
=>DB=DC
b: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)
Do đó ΔAHD=ΔAKD
Suy ra: DH=DK
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
góc CAE=góc KAE
Do đó: ΔACE=ΔAKE
Suy ra: AC=AK
b: Xét ΔEAB cógóc EAB=góc EBA
nên ΔEAB cân tại E
=>EA=EB
mà EK là đường cao
nên K là trung điểm của AB
hay KA=KB
Bạn tự vẽ hình nhé!
a) Áp dụng ĐL Py - ta - go cho ΔABC vuông tại A:
BC2 = AB2 + AC2 = 62 + 82 = 100
=> BC = 10 (cm).
b)Xét Δ vuông BEA và Δ vuông BEK:
BE: chung
∠ABE = ∠EBK (BD là phân giác)
=> ΔBEA = ΔBEK (cạnh góc vuông - góc nhọn kề)
=> BA = BK (c.t.ứ) => ΔAKB cân tại B.
c) Xét ΔBAD và ΔBKD:
BD: chung
∠ABD = ∠DBK (BD là phân giác)
BA = BK (ΔAKB cân tại B)
=> ΔBAD = ΔBKD (c.g.c)
=> ∠BAD = ∠BKD = 90⁰.
=> DK vuông góc BC.
d) Xét ΔAHK vuông tại H:
=> ∠HAK = ∠AHK - ∠HKA = 90⁰ - ∠HKA
Tương tự: ∠KAC = 90⁰ - ∠BAE
Mà ∠HKA = ∠BAE (ΔABK cân tại B)
=> ∠HAK = ∠KAC
=> AK là phân giác ∠HAC.
d) Xét 2 \(\Delta\) vuông \(BCD\) và \(KCD\) có:
\(\widehat{BDC}=\widehat{KDC}=90^0\left(gt\right)\)
\(BD=KD\) (vì D là trung điểm của \(BK\))
Cạnh CD chung
=> \(\Delta BCD=\Delta KCD\) (2 cạnh góc vuông tương ứng bằng nhau).
=> \(\widehat{DBC}=\widehat{DKC}\) (2 góc tương ứng).
Mà \(\widehat{ECB}=\widehat{DBC}\left(cmt\right)\)
=> \(\widehat{ECB}=\widehat{DKC}\left(đpcm\right).\)
Chúc bạn học tốt!