K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

Bạn cho đề sai rồi

31 tháng 7 2018

a, Xét \(\Delta ABD\)và \(\Delta EBD\)có :

\(\widehat{ABD}\)=\(\widehat{EBD}\)( BD là tia p/g của \(\widehat{ABC}\) )

BD chung ( gt )

\(\widehat{BAD}\)\(\widehat{BED}\)( = 90o )

\(\Rightarrow\Delta ABD=\Delta BED\)( ch - gn )

\(\Rightarrow AB=BE\)( 2 cạng t.ư )

b, Xét \(\Delta ABE\)có :

AB = AE ( câu a ) \(\Rightarrow\Delta ABE\)cân tại B

BF là đường p/g của \(\Delta ABE\)

\(\Rightarrow BF\perp AF\)hay BD là đường tt của AE

c, Ta có : \(AB\perp AC\left(gt\right)\)

              \(DK\perp AC\left(gt\right)\)

\(\Rightarrow AB//DK\)

\(\Rightarrow\widehat{ABD}\)\(\widehat{BDK}\)(SLT)

Mà \(\widehat{ABD}\)=  \(\widehat{DBE}\)( BD là tia p/g \(\widehat{ABE}\))

\(\Rightarrow\widehat{BDK}\)\(\widehat{DBK}\)

Xét \(\Delta DBK\)có :

\(\widehat{BDK}\)\(\widehat{DBK}\)(cmt) 

\(\Rightarrow\Delta BDK\)cân tại K

\(\Rightarrow BK=KD\left(đpcm\right)\)

d, Xét \(\Delta ABH\)có : AB < BH + AH

Xét \(\Delta AHC\)có : AC < AH + CH

\(\Rightarrow AB+AC< AH+BH+AH+CH\)

Hay \(AB+AC< BC+2AH\left(đpcm\right)\)

26 tháng 7 2018

a, Xét \(\Delta ABD\)và \(\Delta EBD\)có :

\(\widehat{ABD}\)\(=\widehat{EBD}\)( BD là tia p/g của \(\widehat{ABC}\))

BD chung ( gt )

\(\widehat{BAD}\)\(=\widehat{BED}\)( = 90)

\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)

\(\Rightarrow AB=BE\)( 2 cạnh t.ư )

b, Xét \(\Delta ABE\)có :

AB = BE ( câu a )

\(\Rightarrow\)\(\Delta ABE\)cân tại B

Mà BF là đường p/g của \(\Delta ABE\)

\(\Rightarrow BF\perp AF\)hay BD là đường tt của AE

c, Ta có :

\(\hept{\begin{cases}AB\perp AC\left(gt\right)\\DK\perp Ac\left(gt\right)\end{cases}}\Rightarrow\hept{ }AB//DK\)

\(\Rightarrow\widehat{ABD=}\)\(\widehat{BDK}\)(SLT)

\(\widehat{ABD}\)\(=\widehat{DBE}\)( BD là tia p/g \(\widehat{ABE}\))

\(\Rightarrow\widehat{BDK}\)\(=\widehat{DBK}\)

Xét \(\Delta BDK\)có :

\(\widehat{BDK}\)\(=\widehat{DBK\left(cmt\right)}\)

\(\Rightarrow\Delta BDK\)cân tại K

\(\Rightarrow BK=DK\left(dpcm\right)\)

d, Xét \(\Delta ABH\)có : \(AB< BH+AH\)(1)

Xét \(\Delta AHC\)có : \(AC< AH+CH\)(2)

Từ (1) và (2) \(\Rightarrow AB+AC< AH+BH+AH+CH\)

Hay \(AB+AC< BC+2AH\left(dpcm\right)\)

a: Tacó ΔABC cân tại A

mà AD là đường phân giác

nên D là trug điểm của BC và AD\(\perp\)BC

=>DB=DC

b: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

\(\widehat{HAD}=\widehat{KAD}\)

Do đó ΔAHD=ΔAKD

Suy ra: DH=DK

a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có

AE chung

góc CAE=góc KAE
Do đó: ΔACE=ΔAKE

Suy ra: AC=AK

b: Xét ΔEAB cógóc EAB=góc EBA

nên ΔEAB cân tại E

=>EA=EB

mà EK là đường cao

nên K là trung điểm của AB

hay KA=KB

25 tháng 4 2018

Bạn tự vẽ hình nhé!

a) Áp dụng ĐL Py - ta - go cho ΔABC vuông tại A:

BC2 = AB2 + AC2 = 62 + 82 = 100

=> BC = 10 (cm).

b)Xét Δ vuông BEA và Δ vuông BEK:

BE: chung

∠ABE = ∠EBK (BD là phân giác)

=> ΔBEA = ΔBEK (cạnh góc vuông - góc nhọn kề)

=> BA = BK (c.t.ứ) => ΔAKB cân tại B.

c) Xét ΔBAD và ΔBKD:

BD: chung

∠ABD = ∠DBK (BD là phân giác)

BA = BK (ΔAKB cân tại B)

=> ΔBAD = ΔBKD (c.g.c)

=> ∠BAD = ∠BKD = 90⁰.

=> DK vuông góc BC.

d) Xét ΔAHK vuông tại H:

=> ∠HAK = ∠AHK - ∠HKA = 90⁰ - ∠HKA

Tương tự: ∠KAC = 90⁰ - ∠BAE

Mà ∠HKA = ∠BAE (ΔABK cân tại B)

=> ∠HAK = ∠KAC

=> AK là phân giác ∠HAC.

24 tháng 3 2020

d) Xét 2 \(\Delta\) vuông \(BCD\)\(KCD\) có:

\(\widehat{BDC}=\widehat{KDC}=90^0\left(gt\right)\)

\(BD=KD\) (vì D là trung điểm của \(BK\))

Cạnh CD chung

=> \(\Delta BCD=\Delta KCD\) (2 cạnh góc vuông tương ứng bằng nhau).

=> \(\widehat{DBC}=\widehat{DKC}\) (2 góc tương ứng).

\(\widehat{ECB}=\widehat{DBC}\left(cmt\right)\)

=> \(\widehat{ECB}=\widehat{DKC}\left(đpcm\right).\)

Chúc bạn học tốt!

24 tháng 3 2020

!