Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1+4+7+..+n
Tổng S có số số hạng là \(\frac{\left(n-1\right)}{3}+1=\frac{n+2}{3}\)
Tổng S có giá trị là
\(S=\frac{\left(n+1\right)}{2}.\frac{n+2}{3}=\frac{\left(n+1\right)\left(n+2\right)}{6}\)
\(x^3-5x^2+8x-4.\)
\(=x^3-4x^2-x^2+4x^2+4x^2-4\)
\(=\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)\)
\(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)
\(=\left(x^2-4x+4\right)\left(x-1\right)\)
\(=\left(x-2\right)^2\left(x-1\right)\)
Cảm ơn bạn nhiều
Bạn có thể giúp mình phần còn lại đc hem ? ^.^
Vì BD là phân giác của ABC và ADC
Xét ∆ADB ta có :
A + ABD + ADB = 180°
ABD + ADB = 180 - 85 = 95°
Mà 2ABD + 2ADB = 95°
=> ABC + ADC = 95 * 2 = 190°
Mà A + ABC + ADC + C = 360°
=> C = 360 - 85 - 190 = 85°
Từ giả thiết:
\(a^2=2\left(b^2+c^2\right)\ge\left(b+c\right)^2\Rightarrow\left(\dfrac{a}{b+c}\right)^2\ge1\Rightarrow\dfrac{a}{b+c}\ge1\)
\(P=\dfrac{a}{b+c}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ac+bc}\ge\dfrac{a}{b+c}+\dfrac{\left(b+c\right)^2}{a\left(b+c\right)+2bc}\ge\dfrac{a}{b+c}+\dfrac{\left(b+c\right)^2}{a\left(b+c\right)+\dfrac{1}{2}\left(b+c\right)^2}\)
\(P\ge\dfrac{a}{b+c}+\dfrac{1}{\dfrac{a}{b+c}+\dfrac{1}{2}}\)
Đặt \(\dfrac{a}{b+c}=x\ge1\)
\(\Rightarrow P\ge x+\dfrac{1}{x+\dfrac{1}{2}}=\dfrac{4}{9}\left(x+\dfrac{1}{2}\right)+\dfrac{1}{x+\dfrac{1}{2}}+\dfrac{5}{9}x-\dfrac{2}{9}\)
\(P\ge2\sqrt{\dfrac{4}{9}\left(x+\dfrac{1}{2}\right).\dfrac{1}{\left(x+\dfrac{1}{2}\right)}}+\dfrac{5}{9}.1-\dfrac{2}{9}=\dfrac{5}{3}\)
\(P_{min}=\dfrac{5}{3}\) khi \(x=1\) hay \(a=2b=2c\)