K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2016

\(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)

\(=\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=0\)

7 tháng 7 2016

giỏi quá . Cho hỏi anh học lớp mấy

13 tháng 11 2019

Giúp mình với các bạn

29 tháng 11 2016

Phân tích mẫu thức thành nhân tử

21 tháng 2 2017

1)

\(x+2+\frac{3}{x-2}\)

\(=\frac{\left(x+2\right)\left(x-2\right)}{x-2}+\frac{3}{x-2}\)

\(=\frac{x^2-4}{x-2}+\frac{3}{x-2}\)

\(=\frac{x^2-4+3}{x-2}\)

\(=\frac{x^2-1}{x-2}\)

21 tháng 2 2017

2)

\(\frac{x^2}{\left(x-y\right)\left(x-z\right)}+\frac{y^2}{\left(y-x\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)

\(=\frac{x^2}{\left(x-y\right)\left(x-z\right)}-\frac{y^2}{\left(x-y\right)\left(y-z\right)}+\frac{z^2}{\left(x-z\right)\left(y-z\right)}\)

\(=\frac{x^2\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}-\frac{y^2\left(x-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}+\frac{z^2\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\frac{x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-y\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\frac{x^2y-x^2z-xy^2+y^2z+xz^2-yz^2}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)

\(=\frac{x^2y-x^2z-xy^2+y^2z+xz^2-yz^2}{\left(x^2-xy-xz+yz\right)\left(y-z\right)}\)

\(=\frac{x^2y-x^2z-xy^2+y^2z+xz^2-yz^2}{x^2y-xy^2-xyz+y^2z-x^2z+xyz+xz^2-yz^2}\)

\(=\frac{x^2y-x^2z-xy^2+y^2z+xz^2-yz^2}{x^2y-x^2z-xy^2+y^2z+xz^2-yz^2}\)

\(=1\)

12 tháng 8 2020

quy đồng mẫu thức ta được

\(\frac{yz\left(z-y\right)+xz\left(x-z\right)+xy\left(y-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)\(=\frac{yz\left(z-y\right)+xz\left(x-z\right)-xy\left[\left(z-y\right)+\left(x-z\right)\right]}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{y\left(z-y\right)\left(z-x\right)+x\left(x-z\right)\left(z-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}=\frac{\left(z-y\right)\left(z-x\right)\left(y-x\right)}{xyz\left(z-y\right)\left(z-x\right)\left(y-x\right)}=\frac{1}{xyz}\)

7 tháng 7 2016

Anh có cách khác nè :

\(\frac{1}{x\left(x-y\right)\left(x-z\right)}+\frac{1}{y\left(y-z\right)\left(y-z\right)}+\frac{1}{z\left(z-x\right)\left(z-y\right)}\)

\(=\frac{-yz\left(y-z\right)-zx\left(z-x\right)-xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{yz\left(x-y+z-x\right)-zx\left(z-x\right)-xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{\left(x-y\right)\left(yz-xy\right)-\left(z-x\right)\left(zx-yz\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{y\left(x-y\right)\left(z-x\right)-z\left(x-y\right)\left(z-x\right)}{xyz\left(x-y\right)\left(y-\right)\left(z-x\right)}\)

\(=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{1}{xyz}\)

7 tháng 7 2016

\(\frac{1}{x\left(x-y\right)\left(x-z\right)}+\frac{1}{y\left(y-x\right)\left(y-z\right)}+\frac{1}{z\left(z-x\right)\left(z-y\right)}\)

\(=\frac{-yz\left(y-z\right)-zx\left(z-x\right)-xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{-y^2z+yz^2-z^2x+zx^2-x^2y+xy^2}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{-y^2\left(z-x\right)-zx\left(z-x\right)+y\left(z^2-x^2\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{\left(z-x\right)\left(yz+xy-y^2-zx\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{\left(z-y\right)\left[y\left(x-y\right)-z\left(x-y\right)\right]}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)

\(=\frac{1}{xyz}\)

2 tháng 1 2017

Hay quớ ak! Mơn m nhìu nha ný! <3 <3 <3 (not thả thính =))))

3 tháng 1 2017

chỉ thả tai thui