Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: | a | = a nếu a ≥ 0 và -a nếu a < 0, do đó |a| + a = 2a nếu a ≥ 0 và =0 nếu a < 0
Do vậy, nếu a ∈ Z, thì | a | + a là số chẵn
Áp dụng điều này, với x, y, z ∈ Z thì:
| x – 2y | + x – 2y + | 4y – 5z | + 4y – 5z + | z – 3x | + z – 3x là số chẵn
⇒ (| x – 2y | + | 4y – 5z | + | z – 3x |) + (-2x + 2y – 4z) là số chẵn
⇒ | x – 2y | + | 4y – 5z | + | z – 3x | là số chẵn
Mà 2011 là số lẻ. Vậy không tồn tại các số nguyên x, y, z sao cho:
| x – 2y | + | 4y – 5z | + | z – 3x | = 2011
Ta có: | a | = a nếu a ≥ 0 và -a nếu a < 0, do đó |a| + a = 2a nếu a ≥ 0 và =0 nếu a < 0
Do vậy, nếu a ∈ Z, thì | a | + a là số chẵn
Áp dụng điều này, với x, y, z ∈ Z thì:
| x – 2y | + x – 2y + | 4y – 5z | + 4y – 5z + | z – 3x | + z – 3x là số chẵn
⇒ (| x – 2y | + | 4y – 5z | + | z – 3x |) + (-2x + 2y – 4z) là số chẵn
⇒ | x – 2y | + | 4y – 5z | + | z – 3x | là số chẵn
Mà 2011 là số lẻ. Vậy không tồn tại các số nguyên x, y, z sao cho:
| x – 2y | + | 4y – 5z | + | z – 3x | = 2011
(x - 2y) + (4y - 5z) + (z - 3x)
= x - 2y + 4y - 5z + z - 3x
= 2y - 4z - 2x là số chẵn
Mà |x - 2y| + |4y - 5z| + |z - 3x| cùng tính chẵn lẻ với tổng (x - 2y) + (4y - 5z) + (z - 3x)
=> |x - 2y| + |4y - 5z| + |z - 3x| là số chẵn, khác 2011
=> không tồn tại các giá trị nguyên của x , y ,z
\(\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|=2011\)
\(=\left(x-2y\right)+\left(4y-5z\right)+\left(z-3x\right)\)
\(=x-2y+4y-5z+z-3x\)
\(=2y-4z-2x\)là số chẵn
Mà \(\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|\) cùng chẵn lẽ với tổng \(\left(x-2y\right)+\left(4y-5z\right)+\left(z-3x\right)\)
\(\Rightarrow\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|\) là số chẵn \(\ne2011\)
\(\Rightarrow\)không tồn tại các giá trị nguyên của x,y,z
\(\text{Với mọi a}\left(\text{a là số nguyên thì:}\right)|a|\text{ cùng tính chẵn lẻ với a}\)
\(\Rightarrow2011\text{ cùng tính chẵn lẻ với:}x-2y+4y-5z+z-3x=2y-4z-2x=2\left(y-2z-x\right)\text{ là số chẵn}\)
\(\Rightarrow\text{ vô lí}\Rightarrow\text{ điều phải chứng minh}\)
Giả sử tồn tại các số nguyên thỏa x,y,z mãn đề bài
Giả sử \(x⋮2\)
\(\Rightarrow\left|x-2y\right|⋮2\)
\(\Rightarrow\left|4y-5z\right|+\left|z-3x\right|\)lẻ(Vì 2011 lẻ)
Với \(z⋮2\)thì:
\(\Rightarrow\hept{\begin{cases}\left|4y-5z\right|⋮2\\\left|z-3x\right|⋮2\end{cases}}\Rightarrow\left|4y-5z\right|+\left|z-3x\right|⋮2\left(L\right)\)
Với z ko chia hết cho 2 thì hay z lẻ
\(\Rightarrow\hept{\begin{cases}\left|4y-5z\right|\equiv1\left(mod2\right)\\\left|z-3x\right|\equiv1\left(mod2\right)\end{cases}\Rightarrow\left|4y-5z\right|+\left|z-3x\right|⋮2\left(L\right)}\)
Trường hợp x lẻ chứng minh tương tự ta cũng ko tìm được giá trị nguyên của y,z
Vậy ko tồn tại các số nguyên x,y,z thỏa mãn đề bài(đpcm)
Ta có bổ đề sau:\(\left|x\right|+x\) luôn chẵn với mọi x nguyên
Cái này bạn xét x < 0;x=0 và x > 0 nha !
\(\left|x-2y\right|+\left|4y-5z\right|+\left|z-3x\right|\)
\(\Leftrightarrow\left|x-2y\right|+\left(x-2y\right)+\left|4y-5z\right|+\left(4y-5z\right)+\left|z-3x\right|+\left(z-3x\right)+2\left(x+y+z\right)\)
Ta thấy
\(\left|x+2y\right|+\left(x+2y\right)⋮2\)
\(\left|4y-5z\right|+\left(4y-5z\right)⋮2\)
\(\left|z-3x\right|+\left(z-3x\right)⋮2\)
\(2\left(x+y+z\right)⋮2\)
\(\Rightarrow VT⋮2\Rightarrow VP⋮2\) ( Vô lý )
=> ĐPCM
Xét tổng (x-2y) + (4y-5z)+ (z+3x)+(-2x+2y-4z)
=x-2y + 4y-5z +z+3x - 2x+2y-4z
= (x+3x-2x)+(4y-2y+2y)+(z-5z-4z)
= 2x+4y-8z
=>tổng trên là số chẵn
=> /x-2y/+ /4y-5z/+/z+3x/+(-2x+2y-4z) phải là chẵn
Mà 2017 lẻ nên ko tồn tại...