K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

Chọn B

Gọi số cần tìm là : a 5 chẵn và trong số luôn có mặt số 0.

Số cần tìm được chọn từ một trong các trường hợp :

Trường hợp 1 :   a 5 = 0 có 5 cách chọn.

Khi đó  cách chọn. Suy ra có : A 9 4  (số).

Trường hợp 2 :  có 4 cách chọn.

Chữ số 0 có 3 cách chọn vị trí cách chọn 3 số cho 3 vị trí còn lại.

Suy ra có : 4.3. A 8 3  (số).

Vậy ta có  thỏa mãn yêu cầu bài toán.

2 tháng 2 2018

3:

Ta sẽ chia M ra làm 3 nhóm

Nhóm 1: \(A=\left\{0;3;6\right\}\)

Nhóm 2: \(B=\left\{1;4;7\right\}\)

Nhóm 3: \(C=\left\{2;5;8\right\}\)

TH1: 1 số A,1 số B, 1 số C

*Nếu số ở A chọn là số 0 thì sẽ có 3*3*2*2*1=36 cách

*Nếu số A chọn khác 0 thì sẽ là 2*3*3*3!=108 cách

=>Có 108+36=144 cách

TH2: 3 số A

=>Có 2*2*1=4 số

TH3: 3 số B

=>Có 3!=6 số

TH4: 3 số C

=>Có 3!=6 số

=>Có 144+4+6+6=148+12=160 số

1 tháng 1 2021

Các chữ số được đặt trong các ô trống.  

 .  .  .  . 

TH1: Số cần lập có chữ số 0:

Đưa 0 vào 3 cách

Đưa 1 vào 3 cách

Đưa 3 vào 2 cách

Lấy 1 số bất kì  ô còn lại : 7 cách

=> TH1 có 126 số

TH2: Số cần lập không có chữ số 0:

Đưa 1 vào 4 cách

Đưa 3 vào 3 cách

Lấy 2 số bất kì đưa vào 2  ô còn lại : \(A^2_7\) cách

=> TH2 có 504 số

Vậy lập được tất cả 504 + 126 = 630 số

16 tháng 10 2016

1. số tự nhiên có dạng abce ( nhớ gạch trê đầu ( vì đây là số tự nhiên))

*  ta có h là :

        h= mn 

           trong đó tập hợp mn là {0,1}

               => có 2 trường hợp xảy ra 

                (m,n)=(1,0) hoặc (0,1)

*  ta có số tự nhiên abhe có tập hợp {h,2,3,4,5,6,7,8,9}

    a có 9 cách chọn 

b có 8 cách chọn 

c có 7 cách chọn 

e có 6 cách chọn 

vậy có 9*8*7*6=3024 số

 *ta  phải loại trường hợp h  đứng đầu và có dạng 01

 trường hợp h  đứng đầu và có dạng 01 có số cách chọn là :

a có 1 cách chọn  là h

b có 8 cách 

c có 7 cách 

e có 6 cách 

=>  có 1*8*7*6=336 số 

 vậy số tự nhiên theo yêu cầu đề bài có tổng cộng

3024 - 332688 số 

0 chắc

 

 

 

20 tháng 8 2021

a) TH1 : Xét số thỏa yêu cầu kể cả chữ số đầu tiên bên trái =0

Chọn 3 chữ số lẻ có C35 cách

Chọn 3 chữ số chẵn có C35 cách

Sắp xếp 6 chữ số này có 6! cách

Vậy có C35 . C35 . 6! số

TH2 : Xét số có 6 chữ số thỏa mãn mà chữ số đầu tiên bên trái =0

Chọn 3 chữ số lẻ có C35 cách

Chọn 2 chữ số chẵn có C24 cách

Sắp xếp 5 chữ số có 5! cách

Vậy có C35 . C24 . 5! số

Vậy có C35 .C35. 6! - C35.C24.5! số tự nhiên gồm 6 chữ số khác nhau trong đó có 3 chữ số chẵn 3 chữ số lẻ

 

4 tháng 4 2018

Gọi số tự nhiên cần tìm có dạng  .

TH1: Nếu a=1 khi đó có  cách chọn 4 chữ số xếp vào b;c;d;e.

TH2: Nếu a khác 1  , khi đó: Có 6 cách chọn a. Có 2 cách xếp chữ số 1 vào số cần tạo ở vị trí b hoặc c. Các chữ số còn lại trong số cần tạo có   cách chọn.

Như vậy trường hợp này có  số.

Vậy có tất cả  840+1440=2280 số.

chọn A.

14 tháng 11 2017

Chọn B

Bước 1: ta xếp các số lẻ: có các số lẻ là 1,1,3,5 vậy có 5 ! 3 !  cách xếp.

Bước 2: ta xếp 3 số chẵn 2, 4, 6 xen kẽ 5 số lẻ trên có 6 vị trí để xếp 3 số vậy có A 6 3  cách xếp.

Vậy có  5 ! 3 ! A 6 3 = 2400 số thỏa mãn yêu cầu bài toán.

29 tháng 6 2017

Chọn D

Tập hợp các chữ số chẵn chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {0,2,4,6}

Tập hợp các chữ số lẻ chọn từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 là {1,3,5,7}

+ Số các số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng 

a b c d e ¯  (a có thể bằng 0), đồng thời ba chữ số chẵn đứng liền nhau là 

(để ý: có 3 cách xếp sao cho ba chữ số chẵn đứng liền nhau là 

+ Số các  tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ có dạng  0 b c d e ¯ , đồng thời ba chữ số chẵn đứng liền nhau là 

(để ý: có 1 cách xếp sao cho hai chữ số chẵn còn lại đứng liền với số 0 là {b;c})

Suy ra, số các số tự nhiên thỏa đề ra là