Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+2). (x+4) <0
TH1: (x+2) <0 và (x+4) >0
<=> x< -2 và x> -4
<=>x=3
TH2: (x+2) > 0 và (x+4)<0
<=> x> -2 và x< -4
Loại
=> Chỉ có 1 số thoả mãn là -3
tk
Ta có (x+3)(x+5)≥0(x+3)(x+5)≥0
Trường hợp 1: {x+3≥0x+5≥0{x+3≥0x+5≥0⇔{x≥−3x≥−5⇔{x≥−3x≥−5⇔x≥−3⇔x≥−3
Trường hợp 2: {x+3≤0x+5≤0{x+3≤0x+5≤0⇔{x≤−3x≤−5⇔{x≤−3x≤−5⇔x≤−5⇔x≤−5
Vậy để thỏa mãn (x+3)(x+5)≥0(x+3)(x+5)≥0 thì x≥−3x≥−3 hoặc x≤−5x≤−5
Suy ra có vô số số nguyên x
Đáp án B
Ta có \(\left(x+3\right)\left(x+5\right)\ge0\)
Trường hợp 1: \(\left\{{}\begin{matrix}x+3\ge0\\x+5\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x\ge-5\end{matrix}\right.\)\(\Leftrightarrow x\ge-3\)
Trường hợp 2: \(\left\{{}\begin{matrix}x+3\le0\\x+5\le0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le-3\\x\le-5\end{matrix}\right.\)\(\Leftrightarrow x\le-5\)
Vậy để thỏa mãn \(\left(x+3\right)\left(x+5\right)\ge0\) thì \(x\ge-3\) hoặc \(x\le-5\)
Suy ra có vô số số nguyên x
Đáp án B
Lời giải:
$|x+2|+2|x+2|=3$
$3|x+2|=3$
$|x+2|=1$
$\Rightarrow x+2=1$ hoặc $x+2=-1$
$\Rightarrow x=-1$ hoặc $x=-3$
Vậy có 2 giá trị nguyên của $x$ thỏa mãn
Đáp án C.
có 6 số nguyên thoả mãn là
( -2 , -1 , 0 , 1 , 2 , 3 )
k mình nha